Individual patient data (IPD) meta-analyses build upon traditional (aggregate data) meta-analyses by collecting IPD from the individual studies rather than using aggregated summary data. Although both traditional and IPD meta-analyses produce a summary effect estimate, IPD meta-analyses allow for the analysis of data to be performed as a single dataset. This allows for standardization of exposure, outcomes, and analytic methods across individual studies. IPD meta-analyses also allow the utilization of statistical methods typically used in cohort studies, such as multivariable regression, survival analysis, propensity score matching, uniform subgroup and sensitivity analyses, better management of missing data, and incorporation of unpublished data. However, they are more time-intensive, costly, and subject to participation bias. A separate issue relates to the meta-analytic challenges when the proportional hazards assumption is violated. In these instances, alternative methods of reporting time-to-event estimates, such as restricted mean survival time should be used. This statistical primer summarizes key concepts in both scenarios and provides pertinent examples.

Statistical primer. Individual patient data meta-analysis and meta-analytic approaches in case of non-proportional hazards / Kevin R, An; Di Franco, Antonino; Rahouma, Mohamed; Biondi-Zoccai, Giuseppe; Redfors, Björn; Gaudino, Mario. - In: EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY. - ISSN 1873-734X. - 65:4(2024). [10.1093/ejcts/ezae132]

Statistical primer. Individual patient data meta-analysis and meta-analytic approaches in case of non-proportional hazards

Biondi-Zoccai, Giuseppe;
2024

Abstract

Individual patient data (IPD) meta-analyses build upon traditional (aggregate data) meta-analyses by collecting IPD from the individual studies rather than using aggregated summary data. Although both traditional and IPD meta-analyses produce a summary effect estimate, IPD meta-analyses allow for the analysis of data to be performed as a single dataset. This allows for standardization of exposure, outcomes, and analytic methods across individual studies. IPD meta-analyses also allow the utilization of statistical methods typically used in cohort studies, such as multivariable regression, survival analysis, propensity score matching, uniform subgroup and sensitivity analyses, better management of missing data, and incorporation of unpublished data. However, they are more time-intensive, costly, and subject to participation bias. A separate issue relates to the meta-analytic challenges when the proportional hazards assumption is violated. In these instances, alternative methods of reporting time-to-event estimates, such as restricted mean survival time should be used. This statistical primer summarizes key concepts in both scenarios and provides pertinent examples.
2024
clinical trial; cox proportional hazards model; meta-analysis; restricted mean survival time; survival analysis; time segmented model
01 Pubblicazione su rivista::01a Articolo in rivista
Statistical primer. Individual patient data meta-analysis and meta-analytic approaches in case of non-proportional hazards / Kevin R, An; Di Franco, Antonino; Rahouma, Mohamed; Biondi-Zoccai, Giuseppe; Redfors, Björn; Gaudino, Mario. - In: EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY. - ISSN 1873-734X. - 65:4(2024). [10.1093/ejcts/ezae132]
File allegati a questo prodotto
File Dimensione Formato  
An_Statistical_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1719636
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact