The theory of triples of Poisson brackets and related integrable systems, based on a classical R-matrix R ∈ EndF (g), where g is a finite dimensional associative algebra over a field F viewed as a Lie algebra, was developed by Oevel-Ragnisco and Li-Parmentier [OR89, LP89]. In the present paper we develop an “affine” analogue of this theory by introducing the notion of a continuous Poisson vertex algebra and constructing triples of Poisson λ-brackets. We introduce the corresponding Adler type identities and apply them to integrability of hierarchies of Hamiltonian PDEs.

Adler–Oevel-Ragnisco type operators and Poisson vertex algebras / De Sole, Alberto; Kac, Victor G.; Valeri, Daniele. - In: PURE AND APPLIED MATHEMATICS QUARTERLY. - ISSN 1558-8599. - 20:3(2024), pp. 1181-1249. [10.4310/pamq.2024.v20.n3.a5]

Adler–Oevel-Ragnisco type operators and Poisson vertex algebras

De Sole, Alberto;Valeri, Daniele
2024

Abstract

The theory of triples of Poisson brackets and related integrable systems, based on a classical R-matrix R ∈ EndF (g), where g is a finite dimensional associative algebra over a field F viewed as a Lie algebra, was developed by Oevel-Ragnisco and Li-Parmentier [OR89, LP89]. In the present paper we develop an “affine” analogue of this theory by introducing the notion of a continuous Poisson vertex algebra and constructing triples of Poisson λ-brackets. We introduce the corresponding Adler type identities and apply them to integrability of hierarchies of Hamiltonian PDEs.
2024
Poisson vertex algebra; R-matrix; integrable hierarchy; Adler identity
01 Pubblicazione su rivista::01a Articolo in rivista
Adler–Oevel-Ragnisco type operators and Poisson vertex algebras / De Sole, Alberto; Kac, Victor G.; Valeri, Daniele. - In: PURE AND APPLIED MATHEMATICS QUARTERLY. - ISSN 1558-8599. - 20:3(2024), pp. 1181-1249. [10.4310/pamq.2024.v20.n3.a5]
File allegati a questo prodotto
File Dimensione Formato  
DeSole_Adler-Oevel-Ragnisco_2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 573.17 kB
Formato Adobe PDF
573.17 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1719466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact