The Chow quotient of a toric variety by a subtorus, as defined by Kapranov–Sturmfels– Zelevinsky, coarsely represents the main component of the moduli space of stable toric varieties with a map to a fixed projective toric variety, as constructed by Alexeev and Brion. We show that, after we endow both spaces with the structure of a logarithmic stack, the spaces are isomorphic. Along the way, we construct the Chow quotient stack and demonstrate several properties it satisfies.

Logarithmic Stable Toric Varieties and their Moduli / Ascher, K; Molcho, S. - In: ALGEBRAIC GEOMETRY. - ISSN 2313-1691. - (2016), pp. 296-319. [10.14231/ag-2016-014]

Logarithmic Stable Toric Varieties and their Moduli

Molcho S
2016

Abstract

The Chow quotient of a toric variety by a subtorus, as defined by Kapranov–Sturmfels– Zelevinsky, coarsely represents the main component of the moduli space of stable toric varieties with a map to a fixed projective toric variety, as constructed by Alexeev and Brion. We show that, after we endow both spaces with the structure of a logarithmic stack, the spaces are isomorphic. Along the way, we construct the Chow quotient stack and demonstrate several properties it satisfies.
2016
log stable maps, Chow quotients, stable toric varieties, toric stacks.
01 Pubblicazione su rivista::01a Articolo in rivista
Logarithmic Stable Toric Varieties and their Moduli / Ascher, K; Molcho, S. - In: ALGEBRAIC GEOMETRY. - ISSN 2313-1691. - (2016), pp. 296-319. [10.14231/ag-2016-014]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1719460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact