Given a log smooth morphism f: X → S of toroidal embeddings, we perform a Raynaud-Gruson type operation on f to make it flat and with reduced fibers. We do this by studying the geometry of the associated map of cone complexes C(X) → C(S). As a consequence, we show that the toroidal part of semistable reduction of Abramovich-Karu can be done in a canonical way.
Universal Stacky Semistable Reduction / Molcho, S. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - (2021). [10.1007/s11856-021-2118-0]
Universal Stacky Semistable Reduction
Molcho S
2021
Abstract
Given a log smooth morphism f: X → S of toroidal embeddings, we perform a Raynaud-Gruson type operation on f to make it flat and with reduced fibers. We do this by studying the geometry of the associated map of cone complexes C(X) → C(S). As a consequence, we show that the toroidal part of semistable reduction of Abramovich-Karu can be done in a canonical way.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Molcho_Universal-stacky_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
381.96 kB
Formato
Adobe PDF
|
381.96 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


