Given a log smooth morphism f: X → S of toroidal embeddings, we perform a Raynaud-Gruson type operation on f to make it flat and with reduced fibers. We do this by studying the geometry of the associated map of cone complexes C(X) → C(S). As a consequence, we show that the toroidal part of semistable reduction of Abramovich-Karu can be done in a canonical way.

Universal Stacky Semistable Reduction / Molcho, S. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - (2021). [10.1007/s11856-021-2118-0]

Universal Stacky Semistable Reduction

Molcho S
2021

Abstract

Given a log smooth morphism f: X → S of toroidal embeddings, we perform a Raynaud-Gruson type operation on f to make it flat and with reduced fibers. We do this by studying the geometry of the associated map of cone complexes C(X) → C(S). As a consequence, we show that the toroidal part of semistable reduction of Abramovich-Karu can be done in a canonical way.
2021
Resolution of singularities; stacks; logarithmic geometry; toric geometry
01 Pubblicazione su rivista::01a Articolo in rivista
Universal Stacky Semistable Reduction / Molcho, S. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - (2021). [10.1007/s11856-021-2118-0]
File allegati a questo prodotto
File Dimensione Formato  
Molcho_Universal-stacky_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 381.96 kB
Formato Adobe PDF
381.96 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1719455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact