Using Araki–Yamagami’s characterization of quasi-equivalence for quasi-free representations of the CCRs, we provide an abstract criterion for the existence of isomorphisms of second quantization local von Neumann algebras induced by Bogolubov transformations in terms of the respective one particle modular operators. We discuss possible applications to the problem of local normality of vacua of Klein-Gordon fields with different masses.
Quasi-free isomorphisms of second quantization algebras and modular theory / Conti, R.; Morsella, G.. - In: MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY. - ISSN 1385-0172. - 27:2(2024). [10.1007/s11040-024-09479-8]
Quasi-free isomorphisms of second quantization algebras and modular theory
Conti R.;Morsella G.
2024
Abstract
Using Araki–Yamagami’s characterization of quasi-equivalence for quasi-free representations of the CCRs, we provide an abstract criterion for the existence of isomorphisms of second quantization local von Neumann algebras induced by Bogolubov transformations in terms of the respective one particle modular operators. We discuss possible applications to the problem of local normality of vacua of Klein-Gordon fields with different masses.File | Dimensione | Formato | |
---|---|---|---|
Conti_Quasifree_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
373.98 kB
Formato
Adobe PDF
|
373.98 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.