How many rounds and which assumptions are required for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Pass in [TCC 2013] showed a lower bound of 3 rounds for the case of black-box reductions to falsifiable hardness assumptions with respect to polynomial-time adversaries. On the other side, Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions (OWFs) are sufficient with a constant number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed a 3-round construction based on subexponentially strong one-way permutations. In this work we show as main result the first 4-round concurrent non-malleable commitment scheme assuming the existence of any one-way function. Our approach builds on a new security notion for argument systems against man-in-the-middle attacks: Simulation-Witness-Independence. We show how to construct a 4-round one-many simulation-witnesses-independent argument system from one-way functions. We then combine this new tool in parallel with a weak form of non-malleable commitments constructed by Goyal et al. in [FOCS 2014] obtaining the main result of our work.

Four-round concurrent non-malleable commitments from one-way functions / Ciampi, Michele; Ostrovsky, Rafail; Siniscalchi, Luisa; Visconti, Ivan. - 10402:(2017), pp. 127-157. (Intervento presentato al convegno 37th Annual International Cryptology Conference, CRYPTO 2017 tenutosi a USA) [10.1007/978-3-319-63715-0_5].

Four-round concurrent non-malleable commitments from one-way functions

VISCONTI, Ivan
2017

Abstract

How many rounds and which assumptions are required for concurrent non-malleable commitments? The above question has puzzled researchers for several years. Pass in [TCC 2013] showed a lower bound of 3 rounds for the case of black-box reductions to falsifiable hardness assumptions with respect to polynomial-time adversaries. On the other side, Goyal [STOC 2011], Lin and Pass [STOC 2011] and Goyal et al. [FOCS 2012] showed that one-way functions (OWFs) are sufficient with a constant number of rounds. More recently Ciampi et al. [CRYPTO 2016] showed a 3-round construction based on subexponentially strong one-way permutations. In this work we show as main result the first 4-round concurrent non-malleable commitment scheme assuming the existence of any one-way function. Our approach builds on a new security notion for argument systems against man-in-the-middle attacks: Simulation-Witness-Independence. We show how to construct a 4-round one-many simulation-witnesses-independent argument system from one-way functions. We then combine this new tool in parallel with a weak form of non-malleable commitments constructed by Goyal et al. in [FOCS 2014] obtaining the main result of our work.
2017
37th Annual International Cryptology Conference, CRYPTO 2017
Theoretical Computer Science; Computer Science (all)
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Four-round concurrent non-malleable commitments from one-way functions / Ciampi, Michele; Ostrovsky, Rafail; Siniscalchi, Luisa; Visconti, Ivan. - 10402:(2017), pp. 127-157. (Intervento presentato al convegno 37th Annual International Cryptology Conference, CRYPTO 2017 tenutosi a USA) [10.1007/978-3-319-63715-0_5].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact