This review presents some parsimonious models to cluster two-way and three-way ordinal data. They are formulated has a reparameterization of a finite mixture of Gaussians that is partially observed through a discretization of its variates. Model parameters are estimated using a composite likelihood approach in order to reduce the numerical complexity. The parsimony is obtained by reducing the dimensionality of the variable’s space within and/or between the components.

Clustering Ordinal Data Via Parsimonious Models / Ranalli, Monia; Rocci, Roberto. - (2024), pp. 380-387. (Intervento presentato al convegno SMPS2024 tenutosi a Salzburg, Austria) [10.1007/978-3-031-65993-5_47].

Clustering Ordinal Data Via Parsimonious Models

Ranalli, Monia;Rocci, Roberto
2024

Abstract

This review presents some parsimonious models to cluster two-way and three-way ordinal data. They are formulated has a reparameterization of a finite mixture of Gaussians that is partially observed through a discretization of its variates. Model parameters are estimated using a composite likelihood approach in order to reduce the numerical complexity. The parsimony is obtained by reducing the dimensionality of the variable’s space within and/or between the components.
2024
SMPS2024
Ordinal data, Unsupervised classification, Composite likelihood
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Clustering Ordinal Data Via Parsimonious Models / Ranalli, Monia; Rocci, Roberto. - (2024), pp. 380-387. (Intervento presentato al convegno SMPS2024 tenutosi a Salzburg, Austria) [10.1007/978-3-031-65993-5_47].
File allegati a questo prodotto
File Dimensione Formato  
Rocci_clustering-ordinal-data_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact