We propose a regression method based upon group sparsity that is capable of discovering parametrized governing dynamical equations of motion of a given system by time series measurements. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. This gives a promising new technique for disambiguating governing equations from simple parametric dependencies in physical, biological and engineering systems.

Data-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology / Kutz, J. N.; Rudy, S. H.; Alla, A.; Brunton, S. L.. - 2017-:(2018), pp. 1-5. (Intervento presentato al convegno 7th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017 tenutosi a ant) [10.1109/CAMSAP.2017.8313100].

Data-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology

Alla A.;
2018

Abstract

We propose a regression method based upon group sparsity that is capable of discovering parametrized governing dynamical equations of motion of a given system by time series measurements. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. This gives a promising new technique for disambiguating governing equations from simple parametric dependencies in physical, biological and engineering systems.
2018
7th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017
data-driven discovery; dynamical systems; parametric systems; sparse regression
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Data-Driven discovery of governing physical laws and their parametric dependencies in engineering, physics and biology / Kutz, J. N.; Rudy, S. H.; Alla, A.; Brunton, S. L.. - 2017-:(2018), pp. 1-5. (Intervento presentato al convegno 7th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017 tenutosi a ant) [10.1109/CAMSAP.2017.8313100].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718185
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact