The singular value decomposition (SVD) has a crucial role in model order reduction. It is often utilized in the offline stage to compute basis functions that project the high-dimensional nonlinear problem into a low-dimensional model which is then evaluated cheaply. It constitutes a building block for many techniques such as the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The aim of this work is to provide an efficient computation of low-rank POD and/or DMD modes via randomized matrix decompositions. This is possible due to the randomized singular value decomposition (rSVD) which is a fast and accurate alternative of the SVD. Although this is considered an offline stage, this computation may be extremely expensive; therefore, the use of compressed techniques drastically reduce its cost. Numerical examples show the effectiveness of the method for both POD and DMD.
Randomized model order reduction / Alla, A.; Kutz, J. N.. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1019-7168. - 45:3(2019), pp. 1251-1271. [10.1007/s10444-018-09655-9]
Randomized model order reduction
Alla A.;
2019
Abstract
The singular value decomposition (SVD) has a crucial role in model order reduction. It is often utilized in the offline stage to compute basis functions that project the high-dimensional nonlinear problem into a low-dimensional model which is then evaluated cheaply. It constitutes a building block for many techniques such as the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The aim of this work is to provide an efficient computation of low-rank POD and/or DMD modes via randomized matrix decompositions. This is possible due to the randomized singular value decomposition (rSVD) which is a fast and accurate alternative of the SVD. Although this is considered an offline stage, this computation may be extremely expensive; therefore, the use of compressed techniques drastically reduce its cost. Numerical examples show the effectiveness of the method for both POD and DMD.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.