We investigate a suitable application of Model Order Reduction (MOR) techniques for the numerical approximation of Turing patterns, that are stationary solutions of reaction-diffusion PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique with a correction term that includes missing information in the reduced models. To improve the computational efficiency, we propose an adaptive version of this algorithm in time that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of the proposed methods in terms of accuracy and computational cost for a selection of RD systems, i.e. FitzHugh-Nagumo, Schnakenberg and the morphochemical DIB models, with increasing degree of nonlinearity and more structured patterns.

Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems / Alla, Alessandro; Monti, Angela; Sgura, Ivonne. - In: JOURNAL OF NUMERICAL MATHEMATICS. - ISSN 1570-2820. - 0:0(2023). [10.1515/jnma-2022-0025]

Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems

Alla, Alessandro;
2023

Abstract

We investigate a suitable application of Model Order Reduction (MOR) techniques for the numerical approximation of Turing patterns, that are stationary solutions of reaction-diffusion PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique with a correction term that includes missing information in the reduced models. To improve the computational efficiency, we propose an adaptive version of this algorithm in time that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of the proposed methods in terms of accuracy and computational cost for a selection of RD systems, i.e. FitzHugh-Nagumo, Schnakenberg and the morphochemical DIB models, with increasing degree of nonlinearity and more structured patterns.
2023
01 Pubblicazione su rivista::01a Articolo in rivista
Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems / Alla, Alessandro; Monti, Angela; Sgura, Ivonne. - In: JOURNAL OF NUMERICAL MATHEMATICS. - ISSN 1570-2820. - 0:0(2023). [10.1515/jnma-2022-0025]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718157
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact