The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for 2 and infinity control problems. Depending on the nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers' PDEs are presented, providing a thorough experimental assessment of the proposed methodology.

State-dependent Riccati equation feedback stabilization for nonlinear PDEs / Alla, A; Kalise, D; Simoncini, V. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1019-7168. - 49:1(2023). [10.1007/s10444-022-09998-4]

State-dependent Riccati equation feedback stabilization for nonlinear PDEs

Alla, A;
2023

Abstract

The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for 2 and infinity control problems. Depending on the nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers' PDEs are presented, providing a thorough experimental assessment of the proposed methodology.
2023
Stabilization of PDEs; State-dependent Riccati equations; Algebraic Riccati Equations; Lyapunov equations; Numerical approximation
01 Pubblicazione su rivista::01a Articolo in rivista
State-dependent Riccati equation feedback stabilization for nonlinear PDEs / Alla, A; Kalise, D; Simoncini, V. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1019-7168. - 49:1(2023). [10.1007/s10444-022-09998-4]
File allegati a questo prodotto
File Dimensione Formato  
Alla_State-dependent_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact