We prove the Kawamata-Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic p > 5. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic p > 5 are rational. We show that these theorems are sharp by providing counterexamples in characteristic 5.
On the Kawamata-Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic / Arvidsson, E; Bernasconi, F; Lacini, J. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - 158:4(2022), pp. 750-763. [10.1112/S0010437X22007394]
On the Kawamata-Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic
Bernasconi F
;
2022
Abstract
We prove the Kawamata-Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic p > 5. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic p > 5 are rational. We show that these theorems are sharp by providing counterexamples in characteristic 5.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Arvidsson_On-the-kawamata-viehweg_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
553.69 kB
Formato
Adobe PDF
|
553.69 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


