Background: Prediction of neurorehabilitation outcomes after a Spinal Cord Injury (SCI) is crucial for healthcare resource management and improving prognosis and rehabilitation strategies. Artificial neural networks (ANNs) have emerged as a promising alternative to conventional statistical approaches for identifying complex prognostic factors in SCI patients. Materials: a database of 1256 SCI patients admitted for rehabilitation was analyzed. Clinical and demographic data and SCI characteristics were used to predict functional outcomes using both ANN and linear regression models. The former was structured with input, hidden, and output layers, while the linear regression identified significant variables affecting outcomes. Both approaches aimed to evaluate and compare their accuracy for rehabilitation outcomes measured by the Spinal Cord Independence Measure (SCIM) score. Results: Both ANN and linear regression models identified key predictors of functional outcomes, such as age, injury level, and initial SCIM scores (correlation with actual outcome: R = 0.75 and 0.73, respectively). When also alimented with parameters recorded during hospitalization, the ANN highlighted the importance of these additional factors, like motor completeness and complications during hospitalization, showing an improvement in its accuracy (R = 0.87). Conclusions: ANN seemed to be not widely superior to classical statistics in general, but, taking into account complex and non-linear relationships among variables, emphasized the impact of complications during the hospitalization on recovery, particularly respiratory issues, deep vein thrombosis, and urological complications. These results suggested that the management of complications is crucial for improving functional recovery in SCI patients.
Harnessing Artificial Neural Networks for Spinal Cord Injury Prognosis / Tamburella, Federica; Lena, Emanuela; Mascanzoni, Marta; Iosa, Marco; Scivoletto, Giorgio. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 13:15(2024). [10.3390/jcm13154503]
Harnessing Artificial Neural Networks for Spinal Cord Injury Prognosis
Iosa, Marco
;
2024
Abstract
Background: Prediction of neurorehabilitation outcomes after a Spinal Cord Injury (SCI) is crucial for healthcare resource management and improving prognosis and rehabilitation strategies. Artificial neural networks (ANNs) have emerged as a promising alternative to conventional statistical approaches for identifying complex prognostic factors in SCI patients. Materials: a database of 1256 SCI patients admitted for rehabilitation was analyzed. Clinical and demographic data and SCI characteristics were used to predict functional outcomes using both ANN and linear regression models. The former was structured with input, hidden, and output layers, while the linear regression identified significant variables affecting outcomes. Both approaches aimed to evaluate and compare their accuracy for rehabilitation outcomes measured by the Spinal Cord Independence Measure (SCIM) score. Results: Both ANN and linear regression models identified key predictors of functional outcomes, such as age, injury level, and initial SCIM scores (correlation with actual outcome: R = 0.75 and 0.73, respectively). When also alimented with parameters recorded during hospitalization, the ANN highlighted the importance of these additional factors, like motor completeness and complications during hospitalization, showing an improvement in its accuracy (R = 0.87). Conclusions: ANN seemed to be not widely superior to classical statistics in general, but, taking into account complex and non-linear relationships among variables, emphasized the impact of complications during the hospitalization on recovery, particularly respiratory issues, deep vein thrombosis, and urological complications. These results suggested that the management of complications is crucial for improving functional recovery in SCI patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.