Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates.

In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by Klebsiella pneumoniae sequence type 512 / Capitani, Valerio; Arcari, Gabriele; Ambrosi, Cecilia; Scribano, Daniela; Ceparano, Mariateresa; Polani, Riccardo; De Francesco, Alice; Raponi, Giammarco; Ceccarelli, Giancarlo; Villari, Paolo; Palamara, Anna Teresa; Marzuillo, Carolina; Carattoli, Alessandra. - In: MSPHERE. - ISSN 2379-5042. - (2024), pp. 1-11. [10.1128/msphere.00423-24]

In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by Klebsiella pneumoniae sequence type 512

Capitani, Valerio;Arcari, Gabriele;Ambrosi, Cecilia;Scribano, Daniela;Ceparano, Mariateresa;Polani, Riccardo;De Francesco, Alice;Raponi, Giammarco;Ceccarelli, Giancarlo;Villari, Paolo;Palamara, Anna Teresa;Marzuillo, Carolina;Carattoli, Alessandra
2024

Abstract

Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates.
2024
kpc-31; st512; antibiotic resistance; capsule; hmv; hypermucoid; hypervirulence; mucoviscous; rmpa negative; serum susceptibility; string test; wzc
01 Pubblicazione su rivista::01a Articolo in rivista
In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by Klebsiella pneumoniae sequence type 512 / Capitani, Valerio; Arcari, Gabriele; Ambrosi, Cecilia; Scribano, Daniela; Ceparano, Mariateresa; Polani, Riccardo; De Francesco, Alice; Raponi, Giammarco; Ceccarelli, Giancarlo; Villari, Paolo; Palamara, Anna Teresa; Marzuillo, Carolina; Carattoli, Alessandra. - In: MSPHERE. - ISSN 2379-5042. - (2024), pp. 1-11. [10.1128/msphere.00423-24]
File allegati a questo prodotto
File Dimensione Formato  
Capitani_evolution_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1717748
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact