Scheduling jobs with given processing times on identical parallel machines so as to minimize their total completion time is one of the most basic scheduling problems. We study interesting generalizations of this classical problem involving scenarios. In our model, a scenario is defined as a subset of a predefined and fully specified set of jobs. The aim is to find an assignment of the whole set of jobs to identical parallel machines such that the schedule, obtained for the given scenarios by simply skipping the jobs not in the scenario, optimizes a function of the total completion times over all scenarios. While the underlying scheduling problem without scenarios can be solved efficiently by a simple greedy procedure (SPT rule), scenarios, in general, make the problem NP-hard. We paint an almost complete picture of the evolving complexity landscape, drawing the line between easy and hard. One of our main algorithmic contributions relies on a deep structural result on the maximum imbalance of an optimal schedule, based on a subtle connection to Hilbert bases of a related convex cone.
Total Completion Time Scheduling Under Scenarios / Bosman, Thomas; Martijn van Ee, ; Ergen, Ekin; Imreh, Csanád; Marchetti-Spaccamela, Alberto; Skutella, Martin; Stougie, Leen. - (2023). (Intervento presentato al convegno Approximation and Online Algorithms . WAOA 2023 tenutosi a Amsterdam) [10.1007/978-3-031-49815-2_8].
Total Completion Time Scheduling Under Scenarios
Alberto Marchetti-Spaccamela;
2023
Abstract
Scheduling jobs with given processing times on identical parallel machines so as to minimize their total completion time is one of the most basic scheduling problems. We study interesting generalizations of this classical problem involving scenarios. In our model, a scenario is defined as a subset of a predefined and fully specified set of jobs. The aim is to find an assignment of the whole set of jobs to identical parallel machines such that the schedule, obtained for the given scenarios by simply skipping the jobs not in the scenario, optimizes a function of the total completion times over all scenarios. While the underlying scheduling problem without scenarios can be solved efficiently by a simple greedy procedure (SPT rule), scenarios, in general, make the problem NP-hard. We paint an almost complete picture of the evolving complexity landscape, drawing the line between easy and hard. One of our main algorithmic contributions relies on a deep structural result on the maximum imbalance of an optimal schedule, based on a subtle connection to Hilbert bases of a related convex cone.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.