We introduce a new species sampling model to account for species misidentification. The assumption is that each sampled individual or specimen has an unknown probability of being misclassified. Misclassified units constitute fictitious cases that artificially inflate the number of species observed only once. We consider standard parametric models for the true number of occurrences of each species, and present a Gibbs sampler algorithm to perform Bayesian infer- ence. The proposed model is applied to a real-world microbial diversity dataset.

Species sampling with misidentification: a Bayesian parametric approach / Di Cecco, Davide; Tancredi, Andrea. - (2024), pp. 103-107. (Intervento presentato al convegno International workshop on statistical modelling tenutosi a Durham U.K.).

Species sampling with misidentification: a Bayesian parametric approach

Andrea Tancredi
2024

Abstract

We introduce a new species sampling model to account for species misidentification. The assumption is that each sampled individual or specimen has an unknown probability of being misclassified. Misclassified units constitute fictitious cases that artificially inflate the number of species observed only once. We consider standard parametric models for the true number of occurrences of each species, and present a Gibbs sampler algorithm to perform Bayesian infer- ence. The proposed model is applied to a real-world microbial diversity dataset.
2024
International workshop on statistical modelling
capture-recapture models; species richness problem; bayesian inference; thinned processes
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Species sampling with misidentification: a Bayesian parametric approach / Di Cecco, Davide; Tancredi, Andrea. - (2024), pp. 103-107. (Intervento presentato al convegno International workshop on statistical modelling tenutosi a Durham U.K.).
File allegati a questo prodotto
File Dimensione Formato  
Tancredi_Species-sampling_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1717110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact