Let $N>1$ be an integer coprime to $6$ such that $N\notin\{5,7,13\}$ and let $g=g(N)$ be the genus of the modular curve $X_0(N)$. We compute the intersection matrices relative to special fibres of the minimal regular model of $X_0(N)$. Moreover we prove that the self-intersection of the Arakelov canonical sheaf of $X_0(N)$ is asymptotic to $3g\log N$, for $N\to+\infty$.
Intersection matrices for the minimal regular model of X0(N)${X}_0(N)$ and applications to the Arakelov canonical sheaf / Dolce, Paolo; Mercuri, Pietro. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 110:2(2024). [10.1112/jlms.12964]
Intersection matrices for the minimal regular model of X0(N)${X}_0(N)$ and applications to the Arakelov canonical sheaf
Mercuri, Pietro
2024
Abstract
Let $N>1$ be an integer coprime to $6$ such that $N\notin\{5,7,13\}$ and let $g=g(N)$ be the genus of the modular curve $X_0(N)$. We compute the intersection matrices relative to special fibres of the minimal regular model of $X_0(N)$. Moreover we prove that the self-intersection of the Arakelov canonical sheaf of $X_0(N)$ is asymptotic to $3g\log N$, for $N\to+\infty$.File | Dimensione | Formato | |
---|---|---|---|
Dolce_Intersection_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
752.26 kB
Formato
Adobe PDF
|
752.26 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.