Let $N>1$ be an integer coprime to $6$ such that $N\notin\{5,7,13\}$ and let $g=g(N)$ be the genus of the modular curve $X_0(N)$. We compute the intersection matrices relative to special fibres of the minimal regular model of $X_0(N)$. Moreover we prove that the self-intersection of the Arakelov canonical sheaf of $X_0(N)$ is asymptotic to $3g\log N$, for $N\to+\infty$.

Intersection matrices for the minimal regular model of X0(N)${X}_0(N)$ and applications to the Arakelov canonical sheaf / Dolce, Paolo; Mercuri, Pietro. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 110:2(2024). [10.1112/jlms.12964]

Intersection matrices for the minimal regular model of X0(N)${X}_0(N)$ and applications to the Arakelov canonical sheaf

Mercuri, Pietro
2024

Abstract

Let $N>1$ be an integer coprime to $6$ such that $N\notin\{5,7,13\}$ and let $g=g(N)$ be the genus of the modular curve $X_0(N)$. We compute the intersection matrices relative to special fibres of the minimal regular model of $X_0(N)$. Moreover we prove that the self-intersection of the Arakelov canonical sheaf of $X_0(N)$ is asymptotic to $3g\log N$, for $N\to+\infty$.
2024
Arakelov theory; modular curves; minimal regular model
01 Pubblicazione su rivista::01a Articolo in rivista
Intersection matrices for the minimal regular model of X0(N)${X}_0(N)$ and applications to the Arakelov canonical sheaf / Dolce, Paolo; Mercuri, Pietro. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 110:2(2024). [10.1112/jlms.12964]
File allegati a questo prodotto
File Dimensione Formato  
Dolce_Intersection_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 752.26 kB
Formato Adobe PDF
752.26 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1716200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact