Answering a question by M. Struwe [26] related to the blow-up behavior in the Nirenberg problem, we show that the prescribed Q-curvature equationDelta 2u = (1 - vertical bar x vertical bar(p))e(4u) in R-4, Lambda := integral(R4) (1 - vertical bar x vertical bar(p))e(4u) dx < infinityhas normal solutions (namely solutions which can be written in integral form, and hence satisfy Delta u(x) = O (vertical bar x vertical bar(-2)) as vertical bar x vertical bar ->infinity) if and only if p is an element of (0, 4) and(1 + p) 8 pi(2) <= < 16 pi(2).We also prove existence and non-existence results for the positive curvature case, namely for Delta(2)u = (1 + vertical bar x vertical bar(p))e(4u) in R-4, and discuss some open questions. (C) 2021 Elsevier Inc. All rights reserved.
Normal conformal metrics on R4 with Q-curvature having power-like growth / Hyder, Ali; Martinazzi, Luca. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 301:(2021), pp. 37-72. [10.1016/j.jde.2021.08.014]
Normal conformal metrics on R4 with Q-curvature having power-like growth
Martinazzi, Luca
2021
Abstract
Answering a question by M. Struwe [26] related to the blow-up behavior in the Nirenberg problem, we show that the prescribed Q-curvature equationDelta 2u = (1 - vertical bar x vertical bar(p))e(4u) in R-4, Lambda := integral(R4) (1 - vertical bar x vertical bar(p))e(4u) dx < infinityhas normal solutions (namely solutions which can be written in integral form, and hence satisfy Delta u(x) = O (vertical bar x vertical bar(-2)) as vertical bar x vertical bar ->infinity) if and only if p is an element of (0, 4) and(1 + p) 8 pi(2) <= < 16 pi(2).We also prove existence and non-existence results for the positive curvature case, namely for Delta(2)u = (1 + vertical bar x vertical bar(p))e(4u) in R-4, and discuss some open questions. (C) 2021 Elsevier Inc. All rights reserved.| File | Dimensione | Formato | |
|---|---|---|---|
|
Hyder_Normal_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
443.15 kB
Formato
Adobe PDF
|
443.15 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


