This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions ( lambda(gamma) , u(gamma) ) of the equation F(D(2)u(gamma)) + lambda (gamma)u(gamma)/r(gamma) = 0 in B (0 , 1) \ {0} , u(gamma) = 0 on partial derivative B (0 , 1) where u(gamma) > 0 in B(0, 1) \ {0}/B(0, 1) and gamma > 0. We prove existence of radial solutions which are continuous on B (0 , 1) in the case gamma < 2, existence of unbounded solutions in the case gamma = 2 and a non existence result for gamma > 2. We also give, in the case of Pucci's operators, the explicit value of lambda(2) , which generalizes the Hardy-Sobolev constant for the Laplacian. (c) 2024 Published by Elsevier Masson SAS.

Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls / Birindelli, Isabella; Demengel, Françoise; Leoni, Fabiana. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 186:(2024), pp. 74-102. [10.1016/j.matpur.2024.04.004]

Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls

Birindelli, Isabella
;
Leoni, Fabiana
2024

Abstract

This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions ( lambda(gamma) , u(gamma) ) of the equation F(D(2)u(gamma)) + lambda (gamma)u(gamma)/r(gamma) = 0 in B (0 , 1) \ {0} , u(gamma) = 0 on partial derivative B (0 , 1) where u(gamma) > 0 in B(0, 1) \ {0}/B(0, 1) and gamma > 0. We prove existence of radial solutions which are continuous on B (0 , 1) in the case gamma < 2, existence of unbounded solutions in the case gamma = 2 and a non existence result for gamma > 2. We also give, in the case of Pucci's operators, the explicit value of lambda(2) , which generalizes the Hardy-Sobolev constant for the Laplacian. (c) 2024 Published by Elsevier Masson SAS.
2024
Dans cet article nous nous intéressons à l'existence de valeur propre principale et de fonctions propres associées pour des opérateurs complètement non linéaires dans un domaine épointé, en présence d'un potentiel singulier. Plus pécisément, nous analysons l'existence, l'unicité et la régularité de solutions de l'équation où est définie sur et . Nous montrons l'existence de solutions radiales qui sont continues sur dans le cas , l' existence de solutions non bornées dans le cas et un résultat de non existence dans le cas . Nous donnons aussi, dans le cas des opérateurs de Pucci, la valeur explicite de , ce qui généralise la constante de Hardy–Sobolev dans le cas du Laplacien.
Fully nonlinear elliptic equations; singular potential; principal eigenvalues; regularity of eigenfunctions
01 Pubblicazione su rivista::01a Articolo in rivista
Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls / Birindelli, Isabella; Demengel, Françoise; Leoni, Fabiana. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 186:(2024), pp. 74-102. [10.1016/j.matpur.2024.04.004]
File allegati a questo prodotto
File Dimensione Formato  
Birindelli_Principal-eigenvalues_2024.pdf

solo gestori archivio

Note: Articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 492.63 kB
Formato Adobe PDF
492.63 kB Adobe PDF   Contatta l'autore
Birindelli_preprint_Principal-eigenvalues_2024.pdf.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 287.64 kB
Formato Adobe PDF
287.64 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1715898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact