This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions ( lambda(gamma) , u(gamma) ) of the equation F(D(2)u(gamma)) + lambda (gamma)u(gamma)/r(gamma) = 0 in B (0 , 1) \ {0} , u(gamma) = 0 on partial derivative B (0 , 1) where u(gamma) > 0 in B(0, 1) \ {0}/B(0, 1) and gamma > 0. We prove existence of radial solutions which are continuous on B (0 , 1) in the case gamma < 2, existence of unbounded solutions in the case gamma = 2 and a non existence result for gamma > 2. We also give, in the case of Pucci's operators, the explicit value of lambda(2) , which generalizes the Hardy-Sobolev constant for the Laplacian. (c) 2024 Published by Elsevier Masson SAS.
Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls / Birindelli, Isabella; Demengel, Françoise; Leoni, Fabiana. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 186:(2024), pp. 74-102. [10.1016/j.matpur.2024.04.004]
Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls
Birindelli, Isabella
;Leoni, Fabiana
2024
Abstract
This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions ( lambda(gamma) , u(gamma) ) of the equation F(D(2)u(gamma)) + lambda (gamma)u(gamma)/r(gamma) = 0 in B (0 , 1) \ {0} , u(gamma) = 0 on partial derivative B (0 , 1) where u(gamma) > 0 in B(0, 1) \ {0}/B(0, 1) and gamma > 0. We prove existence of radial solutions which are continuous on B (0 , 1) in the case gamma < 2, existence of unbounded solutions in the case gamma = 2 and a non existence result for gamma > 2. We also give, in the case of Pucci's operators, the explicit value of lambda(2) , which generalizes the Hardy-Sobolev constant for the Laplacian. (c) 2024 Published by Elsevier Masson SAS.File | Dimensione | Formato | |
---|---|---|---|
Birindelli_Principal-eigenvalues_2024.pdf
solo gestori archivio
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
492.63 kB
Formato
Adobe PDF
|
492.63 kB | Adobe PDF | Contatta l'autore |
Birindelli_preprint_Principal-eigenvalues_2024.pdf.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
287.64 kB
Formato
Adobe PDF
|
287.64 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.