Gastric cancer (GC) is a significant healthcare concern, and the identification of high-risk patients is crucial. Indeed, gastric precancerous conditions present significant diagnostic challenges, particularly early intestinal metaplasia (IM) detection. This study developed a deep learning system to assist in IM detection using image patches from gastric corpus examined using virtual chromoendoscopy in a Western country. Utilizing a retrospective dataset of endoscopic images from Sant'Andrea University Hospital of Rome, collected between January 2020 and December 2023, the system extracted 200 × 200 pixel patches, classifying them with a voting scheme. The specificity and sensitivity on the patch test set were 76% and 72%, respectively. The optimization of a learnable voting scheme on a validation set achieved a specificity of 70% and sensitivity of 100% for entire images. Despite data limitations and the absence of pre-trained models, the system shows promising results for preliminary screening in gastric precancerous condition diagnostics, providing an explainable and robust Artificial Intelligence approach.

Convolutional neural network model for intestinal metaplasia recognition in gastric corpus using endoscopic image patches / Ligato, Irene; De Magistris, Giorgio; Dilaghi, Emanuele; Cozza, Giulio; Ciardiello, Andrea; Panzuto, Francesco; Giagu, Stefano; Annibale, Bruno; Napoli, Christian; Esposito, Gianluca. - In: DIAGNOSTICS. - ISSN 2075-4418. - 14:13(2024), pp. 1-11. [10.3390/diagnostics14131376]

Convolutional neural network model for intestinal metaplasia recognition in gastric corpus using endoscopic image patches

Ligato, Irene
Primo
;
De Magistris, Giorgio;Dilaghi, Emanuele;Cozza, Giulio;Ciardiello, Andrea;Panzuto, Francesco;Giagu, Stefano;Annibale, Bruno;Napoli, Christian;Esposito, Gianluca
Ultimo
2024

Abstract

Gastric cancer (GC) is a significant healthcare concern, and the identification of high-risk patients is crucial. Indeed, gastric precancerous conditions present significant diagnostic challenges, particularly early intestinal metaplasia (IM) detection. This study developed a deep learning system to assist in IM detection using image patches from gastric corpus examined using virtual chromoendoscopy in a Western country. Utilizing a retrospective dataset of endoscopic images from Sant'Andrea University Hospital of Rome, collected between January 2020 and December 2023, the system extracted 200 × 200 pixel patches, classifying them with a voting scheme. The specificity and sensitivity on the patch test set were 76% and 72%, respectively. The optimization of a learnable voting scheme on a validation set achieved a specificity of 70% and sensitivity of 100% for entire images. Despite data limitations and the absence of pre-trained models, the system shows promising results for preliminary screening in gastric precancerous condition diagnostics, providing an explainable and robust Artificial Intelligence approach.
2024
BLI; CNN; ResNet50; classification; gastric intestinal metaplasia; imaging diagnostics; segmentation; virtual chromoendoscopy
01 Pubblicazione su rivista::01a Articolo in rivista
Convolutional neural network model for intestinal metaplasia recognition in gastric corpus using endoscopic image patches / Ligato, Irene; De Magistris, Giorgio; Dilaghi, Emanuele; Cozza, Giulio; Ciardiello, Andrea; Panzuto, Francesco; Giagu, Stefano; Annibale, Bruno; Napoli, Christian; Esposito, Gianluca. - In: DIAGNOSTICS. - ISSN 2075-4418. - 14:13(2024), pp. 1-11. [10.3390/diagnostics14131376]
File allegati a questo prodotto
File Dimensione Formato  
diagnostics-14-01376 (1).pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 969.4 kB
Formato Adobe PDF
969.4 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1715896
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact