In this investigation, we adopt a data-driven approach utilizing Direct Numerical Simulation (DNS) data from thermodiffusively unstable NH3/H2-Air mixtures to define progress variables, thereby addressing flame dimensionality concerns. Irreducible error analysis highlights the necessity of incorporating at least three progress variables for a comprehensive depiction of hydrogen-enriched ammonia flames. While two-dimensional models suffice for accurately representing temperature, three-dimensional models are essential for effectively reproducing NO dynamics. Additionally, our investigation of Artificial Neural Network (ANN) models reveals their ability to faithfully replicate DNS data when trained on a subset of that data. However, their performance markedly declines when exclusively trained on a dataset comprising unstretched 1D freely propagating flames. This suggests the critical importance of expanding datasets, particularly by incorporating stretched flames, to bolster the ANN model's capacity.

A-PRIORI ANALYSIS OF THE FLAME STRUCTURE IN THERMODIFFUSIVELY UNSTABLE NH3/H2/AIR MIXTURES / D'Alessio, F.; Bottari, S.; Lapenna, P. E.; Creta, F.. - (2024). (Intervento presentato al convegno 46th Meeting of The Italian Section of The Combustion Institute tenutosi a Bari).

A-PRIORI ANALYSIS OF THE FLAME STRUCTURE IN THERMODIFFUSIVELY UNSTABLE NH3/H2/AIR MIXTURES

F. d'alessio
Primo
;
S. Bottari
Secondo
;
P. E. Lapenna
Penultimo
;
F. Creta
Ultimo
2024

Abstract

In this investigation, we adopt a data-driven approach utilizing Direct Numerical Simulation (DNS) data from thermodiffusively unstable NH3/H2-Air mixtures to define progress variables, thereby addressing flame dimensionality concerns. Irreducible error analysis highlights the necessity of incorporating at least three progress variables for a comprehensive depiction of hydrogen-enriched ammonia flames. While two-dimensional models suffice for accurately representing temperature, three-dimensional models are essential for effectively reproducing NO dynamics. Additionally, our investigation of Artificial Neural Network (ANN) models reveals their ability to faithfully replicate DNS data when trained on a subset of that data. However, their performance markedly declines when exclusively trained on a dataset comprising unstretched 1D freely propagating flames. This suggests the critical importance of expanding datasets, particularly by incorporating stretched flames, to bolster the ANN model's capacity.
2024
46th Meeting of The Italian Section of The Combustion Institute
04 Pubblicazione in atti di convegno::04d Abstract in atti di convegno
A-PRIORI ANALYSIS OF THE FLAME STRUCTURE IN THERMODIFFUSIVELY UNSTABLE NH3/H2/AIR MIXTURES / D'Alessio, F.; Bottari, S.; Lapenna, P. E.; Creta, F.. - (2024). (Intervento presentato al convegno 46th Meeting of The Italian Section of The Combustion Institute tenutosi a Bari).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1715773
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact