The plant-microorganism combinations may contribute to the success of phytoextraction of heavy metal-polluted soil. The purpose of this study was to investigate the effects of cadmium (Cd) soil concentration on selected physiological parameters of the poplar clone "I-214" inoculated at root level with a strain (BT4) of Pseudomonas fluorescens and a commercial product based on microbial consortia (Micosat F FitoA (R)). Plants were subjected to Cd treatment of 40 mg kg(-1) in greenhouse. The effects of plant-microbe interactions, plant growth, leaf physiology, and microbial activity were periodically monitored. Metal concentration and translocation factors in plant tissues proved enhanced Cd uptake in roots of plants inoculated with P. fluorescens and transfer to shoots in plants inoculated with Micosat F FitoA (R), suggesting a promising strategy for using microbes in support of Cd uptake. Plant-microbe integration increased total removal of Cd, without interfering with plant growth, while improving the photosynthetic capacity. Two major mechanisms of metal phytoextraction inducted by microbial inoculation may be suggested: improved Cd accumulation in roots inoculated with P. fluorescens, implying phytostabilization prospective and high Cd transfer to shoots of inoculated plants, outlining enhanced metal translocation.

Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia / Cocozza, C; Vitullo, D; Lima, Giuseppe; Maiuro, Lucia; Marchetti, Marco; Tognetti, Roberto. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - 21:3(2014), pp. 1796-1808. [10.1007/s11356-013-2073-3]

Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia

MARCHETTI, Marco;TOGNETTI, Roberto
2014

Abstract

The plant-microorganism combinations may contribute to the success of phytoextraction of heavy metal-polluted soil. The purpose of this study was to investigate the effects of cadmium (Cd) soil concentration on selected physiological parameters of the poplar clone "I-214" inoculated at root level with a strain (BT4) of Pseudomonas fluorescens and a commercial product based on microbial consortia (Micosat F FitoA (R)). Plants were subjected to Cd treatment of 40 mg kg(-1) in greenhouse. The effects of plant-microbe interactions, plant growth, leaf physiology, and microbial activity were periodically monitored. Metal concentration and translocation factors in plant tissues proved enhanced Cd uptake in roots of plants inoculated with P. fluorescens and transfer to shoots in plants inoculated with Micosat F FitoA (R), suggesting a promising strategy for using microbes in support of Cd uptake. Plant-microbe integration increased total removal of Cd, without interfering with plant growth, while improving the photosynthetic capacity. Two major mechanisms of metal phytoextraction inducted by microbial inoculation may be suggested: improved Cd accumulation in roots inoculated with P. fluorescens, implying phytostabilization prospective and high Cd transfer to shoots of inoculated plants, outlining enhanced metal translocation.
2014
Populus; Heavy metal; Gas exchange; Plant–microbe interaction
01 Pubblicazione su rivista::01a Articolo in rivista
Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia / Cocozza, C; Vitullo, D; Lima, Giuseppe; Maiuro, Lucia; Marchetti, Marco; Tognetti, Roberto. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - 21:3(2014), pp. 1796-1808. [10.1007/s11356-013-2073-3]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1715295
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact