To combat global deforestation, monitoring forest disturbances at sub-annual scales is a key challenge. For this purpose, the new Planetscope nano-satellite constellation is a game changer, with a revisit time of 1 day and a pixel size of 3-m. We present a near-real time forest disturbance alert system based on PlanetScope imagery: the Thresholding Rewards and Penances algorithm (TRP). It produces a new forest change map as soon as a new PlanetScope image is acquired. To calibrate and validate TRP, a reference set was constructed as a complete census of five randomly selected study areas in Tuscany, Italy. We processed 572 PlanetScope images acquired between 1 May 2018 and 5 July 2019. TRP was used to construct forest change maps during the study period for which the final user’s accuracy was 86% and the final producer’s accuracy was 92%. In addition, we estimated the forest change area using an unbiased stratified estimator that can be used with a small sample of reference data. The 95% confidence interval for the sample-based estimate of 56.89 ha included the census-based area estimate of 56.19 ha.
Near-real time forest change detection using PlanetScope imagery / Francini, S.; Mcroberts, R. E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G.. - In: EUROPEAN JOURNAL OF REMOTE SENSING. - ISSN 2279-7254. - 53:1(2020), pp. 233-244. [10.1080/22797254.2020.1806734]
Near-real time forest change detection using PlanetScope imagery
Marchetti M.;
2020
Abstract
To combat global deforestation, monitoring forest disturbances at sub-annual scales is a key challenge. For this purpose, the new Planetscope nano-satellite constellation is a game changer, with a revisit time of 1 day and a pixel size of 3-m. We present a near-real time forest disturbance alert system based on PlanetScope imagery: the Thresholding Rewards and Penances algorithm (TRP). It produces a new forest change map as soon as a new PlanetScope image is acquired. To calibrate and validate TRP, a reference set was constructed as a complete census of five randomly selected study areas in Tuscany, Italy. We processed 572 PlanetScope images acquired between 1 May 2018 and 5 July 2019. TRP was used to construct forest change maps during the study period for which the final user’s accuracy was 86% and the final producer’s accuracy was 92%. In addition, we estimated the forest change area using an unbiased stratified estimator that can be used with a small sample of reference data. The 95% confidence interval for the sample-based estimate of 56.89 ha included the census-based area estimate of 56.19 ha.| File | Dimensione | Formato | |
|---|---|---|---|
|
Marchetti_Near-real-time_2020.pdf
accesso aperto
Note: articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
5.18 MB
Formato
Adobe PDF
|
5.18 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


