We study the behaviour of global minimizers of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>1$$\end{document}-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler-Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.

Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers / Dipasquale, Federico Luigi; Millot, Vincent; Pisante, Adriano. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 63:5(2024). [10.1007/s00526-024-02743-3]

Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers

Pisante, Adriano
2024

Abstract

We study the behaviour of global minimizers of a continuum Landau-de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}<^>1$$\end{document}-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler-Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.
2024
harmonic maps; liquid crystals; topological singularities
01 Pubblicazione su rivista::01a Articolo in rivista
Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers / Dipasquale, Federico Luigi; Millot, Vincent; Pisante, Adriano. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 63:5(2024). [10.1007/s00526-024-02743-3]
File allegati a questo prodotto
File Dimensione Formato  
Dipasquale_Torus-like-solutions_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1714680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact