Juvenile myoclonic epilepsy is an idiopathic generalized epilepsy syndrome associated with photosensitivity in approximately 30-40% of cases. Microstates consist of a brief period of time during which the topography of the whole resting-state electroencephalography signal is characterized by a specific configuration. Previous neurophysiological and neuroimaging studies have suggested that Microstate B may represent activity within the visual network. In this case-control study, we aimed to investigate whether anatomical and functional alterations in the visual network observed in individuals with photosensitivity could lead to changes in Microstate B dynamics in photosensitive patients with juvenile myoclonic epilepsy. Resting-state electroencephalography microstate analysis was performed on 28 patients with juvenile myoclonic epilepsy. Of these, 15 patients exhibited photosensitivity, while the remaining 13 served as non-photosensitive controls. The two groups were carefully matched in terms of age, sex, seizure control and anti-seizure medications. Multivariate analysis of variance and repeated-measures analysis of variance were performed to assess significant differences in microstate metrics and syntax between the photosensitive and the non-photosensitive group. Post hoc false discovery rate adjusted unpaired t-tests were used to determine differences in specific microstate classes between the two groups. The four classical microstates (Classes A, B, C and D) accounted for 72.8% of the total electroencephalography signal variance in the photosensitive group and 75.64% in the non-photosensitive group. Multivariate analysis of variance revealed a statistically significant class-group interaction on microstate temporal metrics (P = 0.021). False discovery rate adjusted univariate analyses of variance indicated a significant class-group interaction for both mean occurrence (P = 0.002) and coverage (P = 0.03), but not for mean duration (P = 0.14). Post hoc false discovery rate adjusted unpaired t-tests showed significantly higher coverage (P = 0.02) and occurrence (P = 0.04) of Microstate B in photosensitive patients compared with non-photosensitive participants, along with an increased probability of transitioning from Microstates C (P = 0.04) and D (P = 0.02) to Microstate B. No significant differences were found concerning the other microstate classes between the two groups. Our study provides novel insights on resting-state electroencephalography microstate dynamics underlying photosensitivity in patients with juvenile myoclonic epilepsy. The increased representation of Microstate B in these patients might reflect the resting-state overactivation of the visual system underlying photosensitivity. Further research is warranted to investigate microstate dynamics in other photosensitive epilepsy syndromes.Using resting-state electroencephalography microstates analysis, Mazzeo et al. revealed a significant difference in Microstate B metrics among juvenile myoclonic epilepsy patients with and without photosensitivity. These findings might reflect the resting-state overactivation of the visual system underlying photosensitivity and provide novel insights into the microstate dynamics in this condition.Graphical Abstract
Resting-state electroencephalography microstates as a marker of photosensitivity in juvenile myoclonic epilepsy / Mazzeo, Adolfo; Cerulli Irelli, Emanuele; Leodori, Giorgio; Mancuso, Marco; Morano, Alessandra; Giallonardo, Anna Teresa; Di Bonaventura, Carlo. - In: BRAIN COMMUNICATIONS. - ISSN 2632-1297. - 6:2(2024). [10.1093/braincomms/fcae054]
Resting-state electroencephalography microstates as a marker of photosensitivity in juvenile myoclonic epilepsy
Mazzeo, Adolfo;Cerulli Irelli, Emanuele
;Leodori, Giorgio;Morano, Alessandra;Giallonardo, Anna Teresa;Di Bonaventura, Carlo
2024
Abstract
Juvenile myoclonic epilepsy is an idiopathic generalized epilepsy syndrome associated with photosensitivity in approximately 30-40% of cases. Microstates consist of a brief period of time during which the topography of the whole resting-state electroencephalography signal is characterized by a specific configuration. Previous neurophysiological and neuroimaging studies have suggested that Microstate B may represent activity within the visual network. In this case-control study, we aimed to investigate whether anatomical and functional alterations in the visual network observed in individuals with photosensitivity could lead to changes in Microstate B dynamics in photosensitive patients with juvenile myoclonic epilepsy. Resting-state electroencephalography microstate analysis was performed on 28 patients with juvenile myoclonic epilepsy. Of these, 15 patients exhibited photosensitivity, while the remaining 13 served as non-photosensitive controls. The two groups were carefully matched in terms of age, sex, seizure control and anti-seizure medications. Multivariate analysis of variance and repeated-measures analysis of variance were performed to assess significant differences in microstate metrics and syntax between the photosensitive and the non-photosensitive group. Post hoc false discovery rate adjusted unpaired t-tests were used to determine differences in specific microstate classes between the two groups. The four classical microstates (Classes A, B, C and D) accounted for 72.8% of the total electroencephalography signal variance in the photosensitive group and 75.64% in the non-photosensitive group. Multivariate analysis of variance revealed a statistically significant class-group interaction on microstate temporal metrics (P = 0.021). False discovery rate adjusted univariate analyses of variance indicated a significant class-group interaction for both mean occurrence (P = 0.002) and coverage (P = 0.03), but not for mean duration (P = 0.14). Post hoc false discovery rate adjusted unpaired t-tests showed significantly higher coverage (P = 0.02) and occurrence (P = 0.04) of Microstate B in photosensitive patients compared with non-photosensitive participants, along with an increased probability of transitioning from Microstates C (P = 0.04) and D (P = 0.02) to Microstate B. No significant differences were found concerning the other microstate classes between the two groups. Our study provides novel insights on resting-state electroencephalography microstate dynamics underlying photosensitivity in patients with juvenile myoclonic epilepsy. The increased representation of Microstate B in these patients might reflect the resting-state overactivation of the visual system underlying photosensitivity. Further research is warranted to investigate microstate dynamics in other photosensitive epilepsy syndromes.Using resting-state electroencephalography microstates analysis, Mazzeo et al. revealed a significant difference in Microstate B metrics among juvenile myoclonic epilepsy patients with and without photosensitivity. These findings might reflect the resting-state overactivation of the visual system underlying photosensitivity and provide novel insights into the microstate dynamics in this condition.Graphical AbstractFile | Dimensione | Formato | |
---|---|---|---|
fcae054.pdf
accesso aperto
Note: Mazzeo_Resting-state_2024
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
910.35 kB
Formato
Adobe PDF
|
910.35 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.