The experience of pain, like other interoceptive processes, has recently been conceptualized in light of predictive coding models and the free energy minimization framework. In these views, the brain integrates sensory, proprioceptive, and interoceptive signals to generate probabilistic inferences about upcoming events, which heavily shape both the state and the perception of our inner body. Here we ask whether it is possible to induce pain expectations by providing false faster (vs. slower) acoustic cardiac feedback before administering electrical cutaneous shocks, and test whether these expectations will shape both the perception of pain and the body’s physiological state toward prior predictions. Results confirmed that faster cardiac feedback elicited pain expectations that affected both perceptual pain judgments and the body’s physiological response. Perceptual pain judgments were biased towards the expected level of pain, such that participants illusorily perceived identical noxious stimuli as more intense and unpleasant. Physiological changes mirrored the predicted level of pain, such that participants’ actual cardiac response in anticipation of pain stimuli showed a deceleration in heart rates, coherently with the well-known orienting cardiac response in anticipation of threatening stimuli (Experiment 1). In a control experiment, such perceptual and cardiac modulations were dramatically reduced when the feedback reproduced an exteroceptive, instead of interoceptive cardiac feedback (Experiment 2). These findings show for the first time that cardiac feedback manipulation can be conceptualized in terms of an interoceptive inference that modulates both our perception and the physiological state of the body, thereby actively generating the interoceptive and autonomic consequences that have been predicted.
Exposure to false cardiac feedback alters pain perception and anticipatory cardiac frequency / Parrotta, Eleonora; Bach, Patric; Pezzulo, Giovanni; Perrucci, Mauro Gianni; Costantini, Marcello; Ferri, Francesca. - In: ELIFE. - ISSN 2050-084X. - (2023). [10.7554/elife.90013.1]
Exposure to false cardiac feedback alters pain perception and anticipatory cardiac frequency
Parrotta, Eleonora
;Pezzulo, Giovanni;
2023
Abstract
The experience of pain, like other interoceptive processes, has recently been conceptualized in light of predictive coding models and the free energy minimization framework. In these views, the brain integrates sensory, proprioceptive, and interoceptive signals to generate probabilistic inferences about upcoming events, which heavily shape both the state and the perception of our inner body. Here we ask whether it is possible to induce pain expectations by providing false faster (vs. slower) acoustic cardiac feedback before administering electrical cutaneous shocks, and test whether these expectations will shape both the perception of pain and the body’s physiological state toward prior predictions. Results confirmed that faster cardiac feedback elicited pain expectations that affected both perceptual pain judgments and the body’s physiological response. Perceptual pain judgments were biased towards the expected level of pain, such that participants illusorily perceived identical noxious stimuli as more intense and unpleasant. Physiological changes mirrored the predicted level of pain, such that participants’ actual cardiac response in anticipation of pain stimuli showed a deceleration in heart rates, coherently with the well-known orienting cardiac response in anticipation of threatening stimuli (Experiment 1). In a control experiment, such perceptual and cardiac modulations were dramatically reduced when the feedback reproduced an exteroceptive, instead of interoceptive cardiac feedback (Experiment 2). These findings show for the first time that cardiac feedback manipulation can be conceptualized in terms of an interoceptive inference that modulates both our perception and the physiological state of the body, thereby actively generating the interoceptive and autonomic consequences that have been predicted.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.