With the rise of wearable technology and real-time gesture recognition, lightweight and efficient models are essential. Traditional approaches struggle with computational demands and power consumption. We present BNNAction-Net, a hand gesture recognition system using Binary Neural Networks (BNNs) to reduce computational complexity. Evaluated on the EgoGesture dataset, our system simulates a real use case with a headset and frontal RGB-D cameras. Optimized with binary layers, pooling, and normalization, it achieves accuracy comparable to floating-point networks with lower resource consumption. Our findings highlight the efficiency of BNNs for wearable devices without significant accuracy loss.

BNNAction-Net: Binary Neural Network on Hands Gesture Recognitions / Fontana, Federico; Di Matteo, Alessandro; Cinque, Luigi; Placidi, Giuseppe; Marini, MARCO RAOUL. - (2024). (Intervento presentato al convegno ACM SIGGRAPH 2024 Posters tenutosi a Denver;USA) [10.1145/3641234.3671047].

BNNAction-Net: Binary Neural Network on Hands Gesture Recognitions

Federico Fontana
;
Luigi Cinque;Marco Raoul Marini
2024

Abstract

With the rise of wearable technology and real-time gesture recognition, lightweight and efficient models are essential. Traditional approaches struggle with computational demands and power consumption. We present BNNAction-Net, a hand gesture recognition system using Binary Neural Networks (BNNs) to reduce computational complexity. Evaluated on the EgoGesture dataset, our system simulates a real use case with a headset and frontal RGB-D cameras. Optimized with binary layers, pooling, and normalization, it achieves accuracy comparable to floating-point networks with lower resource consumption. Our findings highlight the efficiency of BNNs for wearable devices without significant accuracy loss.
2024
ACM SIGGRAPH 2024 Posters
Gesture Recognition; EgoView; XR; BNN
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
BNNAction-Net: Binary Neural Network on Hands Gesture Recognitions / Fontana, Federico; Di Matteo, Alessandro; Cinque, Luigi; Placidi, Giuseppe; Marini, MARCO RAOUL. - (2024). (Intervento presentato al convegno ACM SIGGRAPH 2024 Posters tenutosi a Denver;USA) [10.1145/3641234.3671047].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1713999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact