Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content. While existing methods focus on large and complex models the need for real-time detection demands greater efficiency. With this in mind unlike previous work we introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss. Moreover our method incorporates Fast Fourier Transform (FFT) and Local Binary Pattern (LBP) as additional channel features to uncover manipulation traces in frequency and texture domains. Evaluations on COCOFake DFFD and CIFAKE datasets demonstrate our method's state-of-the-art performance in most scenarios with a significant efficiency gain of up to a 20xreduction in FLOPs during inference. Finally by exploring BNNs in deepfake detection to balance accuracy and efficiency this work paves the way for future research on efficient deepfake detection.

Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks / Lanzino, Romeo; Fontana, Federico; Diko, Anxhelo; Marini, MARCO RAOUL; Cinque, Luigi. - (2024), pp. 3771-3780. (Intervento presentato al convegno IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) tenutosi a Seattle; USA) [10.1109/CVPRW63382.2024.00381].

Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks

Romeo Lanzino
;
Federico Fontana
;
Anxhelo Diko
;
Marco Raoul Marini
;
Luigi Cinque
2024

Abstract

Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content. While existing methods focus on large and complex models the need for real-time detection demands greater efficiency. With this in mind unlike previous work we introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss. Moreover our method incorporates Fast Fourier Transform (FFT) and Local Binary Pattern (LBP) as additional channel features to uncover manipulation traces in frequency and texture domains. Evaluations on COCOFake DFFD and CIFAKE datasets demonstrate our method's state-of-the-art performance in most scenarios with a significant efficiency gain of up to a 20xreduction in FLOPs during inference. Finally by exploring BNNs in deepfake detection to balance accuracy and efficiency this work paves the way for future research on efficient deepfake detection.
2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
BNN; Deep Fake Detection; Image Processing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks / Lanzino, Romeo; Fontana, Federico; Diko, Anxhelo; Marini, MARCO RAOUL; Cinque, Luigi. - (2024), pp. 3771-3780. (Intervento presentato al convegno IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) tenutosi a Seattle; USA) [10.1109/CVPRW63382.2024.00381].
File allegati a questo prodotto
File Dimensione Formato  
Lanzino_postprint_Faster_2024.pdf

accesso aperto

Note: 10.1109/CVPRW63382.2024.00381 - https://openaccess.thecvf.com/content/CVPR2024W/DFAD/papers/Lanzino_Faster_Than_Lies_Real-time_Deepfake_Detection_using_Binary_Neural_Networks_CVPRW_2024_paper.pdf - http://arxiv.org/pdf/2406.04932
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 870.73 kB
Formato Adobe PDF
870.73 kB Adobe PDF
Lanzino_Faster-Than-Lies_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1713996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact