This paper explores the potentials of multi-perspective shadow features in drone-borne SAR images for the reconstruction of targets' shapes. By exploiting target shadows from multiple viewing angles, a comprehensive understanding of targets' morphology can be obtained. This holds substantial promise in potentially deriving three-dimensional measurements encompassing length, width, and height of the targeted objects. The proposed methodology adopts a decentralized approach, involving the extraction and subsequent combination of information from shadowed areas within individual images. This approach is validated through application to experimental data acquired by means of a 24 GHz INRAS radar-equipped drone-borne SAR system. The outcomes show the capability of diverse illumination angles in capturing distinct characteristics of targets, thereby enabling the extraction of the 3D shapes of man-made objects spanning varying dimensional classes.

Target shape reconstruction from multi-perspective shadows in drone-borne SAR systems / Nasso, Ilaria; Santi, Fabrizio; Pastina, Debora; Bekar, Ali; Antoniou, Michail; Gilliam, Christopher. - (2024). (Intervento presentato al convegno 2024 IEEE Radar Conference (RadarConf24) tenutosi a Denver, Colorado, USA) [10.1109/radarconf2458775.2024.10549373].

Target shape reconstruction from multi-perspective shadows in drone-borne SAR systems

Nasso, Ilaria
;
Santi, Fabrizio;Pastina, Debora;
2024

Abstract

This paper explores the potentials of multi-perspective shadow features in drone-borne SAR images for the reconstruction of targets' shapes. By exploiting target shadows from multiple viewing angles, a comprehensive understanding of targets' morphology can be obtained. This holds substantial promise in potentially deriving three-dimensional measurements encompassing length, width, and height of the targeted objects. The proposed methodology adopts a decentralized approach, involving the extraction and subsequent combination of information from shadowed areas within individual images. This approach is validated through application to experimental data acquired by means of a 24 GHz INRAS radar-equipped drone-borne SAR system. The outcomes show the capability of diverse illumination angles in capturing distinct characteristics of targets, thereby enabling the extraction of the 3D shapes of man-made objects spanning varying dimensional classes.
2024
2024 IEEE Radar Conference (RadarConf24)
drone-borne SAR images; shadow detection; targets feature extraction; 3D shape reconstruction
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Target shape reconstruction from multi-perspective shadows in drone-borne SAR systems / Nasso, Ilaria; Santi, Fabrizio; Pastina, Debora; Bekar, Ali; Antoniou, Michail; Gilliam, Christopher. - (2024). (Intervento presentato al convegno 2024 IEEE Radar Conference (RadarConf24) tenutosi a Denver, Colorado, USA) [10.1109/radarconf2458775.2024.10549373].
File allegati a questo prodotto
File Dimensione Formato  
Nasso_Target_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Contatta l'autore
Nasso_Frontespizio_Target_2024.pdf

solo gestori archivio

Note: Frontespizio
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 8.13 MB
Formato Adobe PDF
8.13 MB Adobe PDF   Contatta l'autore
Nasso_Indice_Target_2024.pdf

solo gestori archivio

Note: Indice
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 228.78 kB
Formato Adobe PDF
228.78 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1713776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact