This paper explores the potentials of multi-perspective shadow features in drone-borne SAR images for the reconstruction of targets' shapes. By exploiting target shadows from multiple viewing angles, a comprehensive understanding of targets' morphology can be obtained. This holds substantial promise in potentially deriving three-dimensional measurements encompassing length, width, and height of the targeted objects. The proposed methodology adopts a decentralized approach, involving the extraction and subsequent combination of information from shadowed areas within individual images. This approach is validated through application to experimental data acquired by means of a 24 GHz INRAS radar-equipped drone-borne SAR system. The outcomes show the capability of diverse illumination angles in capturing distinct characteristics of targets, thereby enabling the extraction of the 3D shapes of man-made objects spanning varying dimensional classes.
Target shape reconstruction from multi-perspective shadows in drone-borne SAR systems / Nasso, Ilaria; Santi, Fabrizio; Pastina, Debora; Bekar, Ali; Antoniou, Michail; Gilliam, Christopher. - (2024). (Intervento presentato al convegno 2024 IEEE Radar Conference (RadarConf24) tenutosi a Denver, Colorado, USA) [10.1109/radarconf2458775.2024.10549373].
Target shape reconstruction from multi-perspective shadows in drone-borne SAR systems
Nasso, Ilaria
;Santi, Fabrizio;Pastina, Debora;
2024
Abstract
This paper explores the potentials of multi-perspective shadow features in drone-borne SAR images for the reconstruction of targets' shapes. By exploiting target shadows from multiple viewing angles, a comprehensive understanding of targets' morphology can be obtained. This holds substantial promise in potentially deriving three-dimensional measurements encompassing length, width, and height of the targeted objects. The proposed methodology adopts a decentralized approach, involving the extraction and subsequent combination of information from shadowed areas within individual images. This approach is validated through application to experimental data acquired by means of a 24 GHz INRAS radar-equipped drone-borne SAR system. The outcomes show the capability of diverse illumination angles in capturing distinct characteristics of targets, thereby enabling the extraction of the 3D shapes of man-made objects spanning varying dimensional classes.File | Dimensione | Formato | |
---|---|---|---|
Nasso_Target_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Contatta l'autore |
Nasso_Frontespizio_Target_2024.pdf
solo gestori archivio
Note: Frontespizio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.13 MB
Formato
Adobe PDF
|
8.13 MB | Adobe PDF | Contatta l'autore |
Nasso_Indice_Target_2024.pdf
solo gestori archivio
Note: Indice
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
228.78 kB
Formato
Adobe PDF
|
228.78 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.