One can infer the orbital alignment of exoplanets with respect to the spin of their host stars using the Rossiter-McLaughlin effect, thereby giving us the chance to test planet formation and migration theories and improve our understanding of the currently observed population. We analyzed archival HARPS and HARPS-N spectroscopic transit time series of six gas giant exoplanets on short orbits, namely WASP-77 Ab, WASP-101b, WASP-103b, WASP-105b, WASP-120b, and WASP-131b. We find a moderately misaligned orbit for WASP-101b (lambda = 34 degrees +/- 3) and a highly misaligned orbit for WASP-131b (lambda = 161 degrees +/- 5), while the four remaining exoplanets appear to be aligned: WASP-77 Ab (lambda = -8 degrees(+19)(-18)), WASP-103b (lambda = -2 degrees(+35)(-36)), WASP-105b (lambda = -14 degrees(+28)(-24)), and WASP-120b (lambda = -2 degrees +/- 4). For WASP-77 Ab, we are able to infer its true orbital obliquity (Psi = 48 degrees(+22)(-21)). We additionally performed transmission spectroscopy of the targets in search of strong atomic absorbers in the exoatmospheres, but were unable to detect any features, most likely due to the presence of high-altitude clouds or Rayleigh scattering muting the strength of the features. Finally, we comment on future perspectives on studying these planets with upcoming space missions to investigate their evolution and migration histories.

Stellar obliquity measurements of six gas giants. Orbital misalignment of WASP-101b and WASP-131b / Zak, J.; Bocchieri, A.; Sedaghati, E.; Boffin, H. M. J.; Prudil, Z.; Skarka, M.; Changeat, Q.; Pascale, E.; Itrich, D.; Ivanov, V. D.; Vitkova, M.; Kabath, P.; Roth, M.; Hatzes, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 686:(2024), pp. 1-19. [10.1051/0004-6361/202349084]

Stellar obliquity measurements of six gas giants. Orbital misalignment of WASP-101b and WASP-131b

Bocchieri, A.;Boffin, H. M. J.;Pascale, E.;Roth, M.;
2024

Abstract

One can infer the orbital alignment of exoplanets with respect to the spin of their host stars using the Rossiter-McLaughlin effect, thereby giving us the chance to test planet formation and migration theories and improve our understanding of the currently observed population. We analyzed archival HARPS and HARPS-N spectroscopic transit time series of six gas giant exoplanets on short orbits, namely WASP-77 Ab, WASP-101b, WASP-103b, WASP-105b, WASP-120b, and WASP-131b. We find a moderately misaligned orbit for WASP-101b (lambda = 34 degrees +/- 3) and a highly misaligned orbit for WASP-131b (lambda = 161 degrees +/- 5), while the four remaining exoplanets appear to be aligned: WASP-77 Ab (lambda = -8 degrees(+19)(-18)), WASP-103b (lambda = -2 degrees(+35)(-36)), WASP-105b (lambda = -14 degrees(+28)(-24)), and WASP-120b (lambda = -2 degrees +/- 4). For WASP-77 Ab, we are able to infer its true orbital obliquity (Psi = 48 degrees(+22)(-21)). We additionally performed transmission spectroscopy of the targets in search of strong atomic absorbers in the exoatmospheres, but were unable to detect any features, most likely due to the presence of high-altitude clouds or Rayleigh scattering muting the strength of the features. Finally, we comment on future perspectives on studying these planets with upcoming space missions to investigate their evolution and migration histories.
2024
techniques: radial velocities; planets and satellites: atmospheres; planets and satellites: gaseous planets; planet-star interactions
01 Pubblicazione su rivista::01a Articolo in rivista
Stellar obliquity measurements of six gas giants. Orbital misalignment of WASP-101b and WASP-131b / Zak, J.; Bocchieri, A.; Sedaghati, E.; Boffin, H. M. J.; Prudil, Z.; Skarka, M.; Changeat, Q.; Pascale, E.; Itrich, D.; Ivanov, V. D.; Vitkova, M.; Kabath, P.; Roth, M.; Hatzes, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 686:(2024), pp. 1-19. [10.1051/0004-6361/202349084]
File allegati a questo prodotto
File Dimensione Formato  
Zak_Stellar_2024.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 13.46 MB
Formato Adobe PDF
13.46 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1713470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact