A novel model-based biclustering approach for multivariate data is introduced exploiting a finite mixture of generalized latent trait models. The proposed model clusters units into distinct subsets, called components. Within each component, subsets of variables, called seg- ments, are identified by specifying the linear predictor in terms of a row-stochastic vector. The continuous latent trait integrated into the model allows us to account for the residual dependence between mul- tivariate outcomes from the same unit. We employ an EM algorithm for maximum likelihood estimation of model parameters, with Gauss- Hermite quadrature utilized to approximate multidimensional integrals where closed-form solutions are not available.

Mixtures of Generalized Latent Trait Analyzers for biclustering multivariate data / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 1-5. (Intervento presentato al convegno The 52nd Scientific Meeting of the Italian Statistical Society tenutosi a Bari).

Mixtures of Generalized Latent Trait Analyzers for biclustering multivariate data

Maria Francesca Marino;Francesca Martella
2024

Abstract

A novel model-based biclustering approach for multivariate data is introduced exploiting a finite mixture of generalized latent trait models. The proposed model clusters units into distinct subsets, called components. Within each component, subsets of variables, called seg- ments, are identified by specifying the linear predictor in terms of a row-stochastic vector. The continuous latent trait integrated into the model allows us to account for the residual dependence between mul- tivariate outcomes from the same unit. We employ an EM algorithm for maximum likelihood estimation of model parameters, with Gauss- Hermite quadrature utilized to approximate multidimensional integrals where closed-form solutions are not available.
2024
The 52nd Scientific Meeting of the Italian Statistical Society
model-based clustering; GLMs; Dependent observations; EM algorithm; Gaussian quadrature
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixtures of Generalized Latent Trait Analyzers for biclustering multivariate data / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 1-5. (Intervento presentato al convegno The 52nd Scientific Meeting of the Italian Statistical Society tenutosi a Bari).
File allegati a questo prodotto
File Dimensione Formato  
Failli_Mixtures_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1712953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact