We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution-a solitonic star-and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.

Sine-Gordon solitonic scalar stars and black holes / Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 97:12(2018). [10.1103/PhysRevD.97.124018]

Sine-Gordon solitonic scalar stars and black holes

Franzin, Edgardo;
2018

Abstract

We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution-a solitonic star-and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.
2018
01 Pubblicazione su rivista::01a Articolo in rivista
Sine-Gordon solitonic scalar stars and black holes / Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 97:12(2018). [10.1103/PhysRevD.97.124018]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1712903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact