Raman spectroscopy (RS), for its robust analytical capabilities under constant development, is a powerful method for the identification of various materials, in particular pigments in cultural heritage. Characterization of the artist’s palette is of fundamental importance for the correct formulation of restoration intervention as well as for preventive conservation of artworks. Here we examine the number and variability of research studies exploiting Bravo handheld Raman spectrophotometer relying on the excitation of Raman signal with temperature-shifted diode lasers emitting at 852 and 785 nm. To this end, we explore the spectral features of common historical pigments examined as powders and in the paint layer. We show that some materials may exhibit slightly different spectra as concerns especially the relative intensity of Raman lines with 852 nm laser excitation wavelength as compared to the standard 785 nm. The aim is to provide the research community with a reference spectral database that facilitates the identification of unknown pigments using the 852 nm excitation source.
Historical Pigments and Paint Layers: Raman Spectral Library with 852 nm Excitation Laser / Innocenti, Silvia; Quintero Balbas, Diego; Galeotti, Monica; Cagnini, Andrea; Porcinai, Simone; Striova, Jana. - In: MINERALS. - ISSN 2075-163X. - (2024). [10.3390/min14060557]
Historical Pigments and Paint Layers: Raman Spectral Library with 852 nm Excitation Laser
Silvia Innocenti;
2024
Abstract
Raman spectroscopy (RS), for its robust analytical capabilities under constant development, is a powerful method for the identification of various materials, in particular pigments in cultural heritage. Characterization of the artist’s palette is of fundamental importance for the correct formulation of restoration intervention as well as for preventive conservation of artworks. Here we examine the number and variability of research studies exploiting Bravo handheld Raman spectrophotometer relying on the excitation of Raman signal with temperature-shifted diode lasers emitting at 852 and 785 nm. To this end, we explore the spectral features of common historical pigments examined as powders and in the paint layer. We show that some materials may exhibit slightly different spectra as concerns especially the relative intensity of Raman lines with 852 nm laser excitation wavelength as compared to the standard 785 nm. The aim is to provide the research community with a reference spectral database that facilitates the identification of unknown pigments using the 852 nm excitation source.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.