Spatial networks describe relations among agents that live in a metric space and whose locations affect the probability of connections. Recently, nonpara- metric Bayesian statistics (BNP) proved itself to be a powerful tool to provide random graph models that mimic real world networks, but no proposals have been made so far to include spatial covariates. I will show how some available models fail in recovering spatial information and conjecture a way to solve the problem.
Issues with sparse spatial random graphs / Panero, Francesca. - (2023), pp. 250-253. (Intervento presentato al convegno CLADAG 2023 14-th Scientific Meeting Classification and Data Analysis Group tenutosi a Salerno; Italy).
Issues with sparse spatial random graphs
Panero, FrancescaPrimo
2023
Abstract
Spatial networks describe relations among agents that live in a metric space and whose locations affect the probability of connections. Recently, nonpara- metric Bayesian statistics (BNP) proved itself to be a powerful tool to provide random graph models that mimic real world networks, but no proposals have been made so far to include spatial covariates. I will show how some available models fail in recovering spatial information and conjecture a way to solve the problem.File | Dimensione | Formato | |
---|---|---|---|
Panero_Issues-Sparse-Spatial_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
111.7 kB
Formato
Adobe PDF
|
111.7 kB | Adobe PDF | Contatta l'autore |
copertina_indice_cladag_2023.pdf
solo gestori archivio
Note: Indice e copertina atti convegno
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
670.36 kB
Formato
Adobe PDF
|
670.36 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.