Given the synergy between Large Language Models (LLMs) and Knowledge Graphs (KGs), we introduce a pipeline to tackle complex linguistic tasks, which we are experimenting in the legal domain. While LLMs offer unprecedented generative capabilities, their reliance on sub-symbolic processing can lead to fallacious outcomes. Our methodology introduces an advanced Retrieval Augmented Generation (RAG) pipeline, enriched with two KGs and optimized LLMs, promising to enhance the resolution of complex linguistic tasks. Through KG construction based on prompt engineering techniques and iterative fine-tuning, we transcend the limitations of conventional LLMs.

Enhancing Complex Linguistic Tasks Resolution Through Fine-Tuning LLMs, RAG and Knowledge Graphs (Short Paper) / Bianchini, Filippo; Calamo, Marco; De Luzi, Francesca; Macri', Mattia; Mecella, Massimo. - (2024), pp. 147-155. (Intervento presentato al convegno 36th International Conference on Advanced Information Systems Engineering tenutosi a Limassol, Cyprus) [10.1007/978-3-031-61003-5_13].

Enhancing Complex Linguistic Tasks Resolution Through Fine-Tuning LLMs, RAG and Knowledge Graphs (Short Paper)

Bianchini, Filippo;Calamo, Marco;De Luzi, Francesca;Macri', Mattia;Mecella, Massimo
2024

Abstract

Given the synergy between Large Language Models (LLMs) and Knowledge Graphs (KGs), we introduce a pipeline to tackle complex linguistic tasks, which we are experimenting in the legal domain. While LLMs offer unprecedented generative capabilities, their reliance on sub-symbolic processing can lead to fallacious outcomes. Our methodology introduces an advanced Retrieval Augmented Generation (RAG) pipeline, enriched with two KGs and optimized LLMs, promising to enhance the resolution of complex linguistic tasks. Through KG construction based on prompt engineering techniques and iterative fine-tuning, we transcend the limitations of conventional LLMs.
2024
36th International Conference on Advanced Information Systems Engineering
LLM; Artificial Intelligence
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Enhancing Complex Linguistic Tasks Resolution Through Fine-Tuning LLMs, RAG and Knowledge Graphs (Short Paper) / Bianchini, Filippo; Calamo, Marco; De Luzi, Francesca; Macri', Mattia; Mecella, Massimo. - (2024), pp. 147-155. (Intervento presentato al convegno 36th International Conference on Advanced Information Systems Engineering tenutosi a Limassol, Cyprus) [10.1007/978-3-031-61003-5_13].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1711577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact