We aim at performing a joint clustering of units and variables in a binary data matrix in a biclustering perspective. In this framework, units are partitioned into clusters (components) via a nite mixture approach; in each component, variables are partitioned into clusters (segments) by adopting a exible specication of the linear predictor. Dependence between variables is modeled via a multidimensional, continuous, latent trait. The proposed model is applied to the Regensburg Pediatric Appendicitis data set, with the aim of identifying homogeneous groups of pediatric patients with respect to subsets of clinical features

Biclustering of discrete data by extended finite mixtures of latent trait models / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 264-269. (Intervento presentato al convegno Statistics and Data Science Conference tenutosi a Palerno).

Biclustering of discrete data by extended finite mixtures of latent trait models

Maria Francesca Marino;Francesca Martella
2024

Abstract

We aim at performing a joint clustering of units and variables in a binary data matrix in a biclustering perspective. In this framework, units are partitioned into clusters (components) via a nite mixture approach; in each component, variables are partitioned into clusters (segments) by adopting a exible specication of the linear predictor. Dependence between variables is modeled via a multidimensional, continuous, latent trait. The proposed model is applied to the Regensburg Pediatric Appendicitis data set, with the aim of identifying homogeneous groups of pediatric patients with respect to subsets of clinical features
2024
Statistics and Data Science Conference
Model-based clustering, Finite mixtures, Concomitant variables, Gaus- sian quadrature, EM algorithm
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Biclustering of discrete data by extended finite mixtures of latent trait models / Failli, Dalila; Marino, MARIA FRANCESCA; Martella, Francesca. - (2024), pp. 264-269. (Intervento presentato al convegno Statistics and Data Science Conference tenutosi a Palerno).
File allegati a questo prodotto
File Dimensione Formato  
Failli_Biclustering_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 758.62 kB
Formato Adobe PDF
758.62 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1710927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact