Screening mechanisms are essential features of dark energy models mediating a fifth force on large scales. We study the regime of strong scalar field nonlinearities, known as Vainshtein screening, in the most general scalar-tensor theories propagating a single scalar degree of freedom. We first develop an effective approach to parametrize cosmological perturbations beyond linear order for these theories. In the quasistatic limit, the fully nonlinear effective Lagrangian contains six independent terms, one of which starts at cubic order in perturbations. We compute the two gravitational potentials around a spherical body. Outside and near the body, screening reproduces standard gravity, with a modified gravitational coupling. Inside the body, the two potentials are different and depend on the density profile, signalling the breaking of the Vainshtein screening. We provide the most general expressions for these modifications, revising and extending previous results. We apply our findings to show that the combination of the GW170817 event, the Hulse-Taylor pulsar and stellar structure physics, constrain the parameters of these general theories at the level of 10-1, and of Gleyzes-Langlois-Piazza-Vernizzi theories at the level of 10-2.

Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski / Dima, Alexandru; Vernizzi, Filippo. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 97:10(2018). [10.1103/PhysRevD.97.101302]

Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski

Alexandru Dima
Investigation
;
2018

Abstract

Screening mechanisms are essential features of dark energy models mediating a fifth force on large scales. We study the regime of strong scalar field nonlinearities, known as Vainshtein screening, in the most general scalar-tensor theories propagating a single scalar degree of freedom. We first develop an effective approach to parametrize cosmological perturbations beyond linear order for these theories. In the quasistatic limit, the fully nonlinear effective Lagrangian contains six independent terms, one of which starts at cubic order in perturbations. We compute the two gravitational potentials around a spherical body. Outside and near the body, screening reproduces standard gravity, with a modified gravitational coupling. Inside the body, the two potentials are different and depend on the density profile, signalling the breaking of the Vainshtein screening. We provide the most general expressions for these modifications, revising and extending previous results. We apply our findings to show that the combination of the GW170817 event, the Hulse-Taylor pulsar and stellar structure physics, constrain the parameters of these general theories at the level of 10-1, and of Gleyzes-Langlois-Piazza-Vernizzi theories at the level of 10-2.
2018
Alternative gravity theories, Screening, Vainshtein, dark energy, fifth force, cosmological model, pulsar
01 Pubblicazione su rivista::01a Articolo in rivista
Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski / Dima, Alexandru; Vernizzi, Filippo. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 97:10(2018). [10.1103/PhysRevD.97.101302]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1710741
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact