We investigate the onset of a non-equilibrium phase transition in a one-dimensional ring, constituted by two urns connected by two strands, called active and passive channels. A set of N particles move inside the ring with constant individual speeds; collisions against the channel entries produce reflections with certain probabilities, that differ between active and passive channels. The microscopic dynamics differs from a classical 1D billiard owing to the presence of an interaction mechanism acting inside the active channel, which potentially reverses velocities of its particles. We outline a general theory for the feedback-controlled system which describes quantitatively the phase diagram of the model, based on a mixing property, that is analytically predicted and numerically verified. The probability distributions we define and evolve in time are 1D projections of uniform distributions on d-dimensional spherical surfaces, with d≥1 and d=∞. Consequently results that apply to higher dimensional systems are recovered.

Particle traps and stationary currents captured by an active 1D model / Cirillo, E. N. M.; Colangeli, M.; Di Francesco, A.; Kroger, M.; Rondoni, L.. - In: PHYSICA. A. - ISSN 0378-4371. - 642:(2024), pp. 1-20. [10.1016/j.physa.2024.129763]

Particle traps and stationary currents captured by an active 1D model

Cirillo E. N. M.;
2024

Abstract

We investigate the onset of a non-equilibrium phase transition in a one-dimensional ring, constituted by two urns connected by two strands, called active and passive channels. A set of N particles move inside the ring with constant individual speeds; collisions against the channel entries produce reflections with certain probabilities, that differ between active and passive channels. The microscopic dynamics differs from a classical 1D billiard owing to the presence of an interaction mechanism acting inside the active channel, which potentially reverses velocities of its particles. We outline a general theory for the feedback-controlled system which describes quantitatively the phase diagram of the model, based on a mixing property, that is analytically predicted and numerically verified. The probability distributions we define and evolve in time are 1D projections of uniform distributions on d-dimensional spherical surfaces, with d≥1 and d=∞. Consequently results that apply to higher dimensional systems are recovered.
2024
Billiard; Currents; Fluctuations; Fourier analysis; Maxwell demon; Nonequilibrium steady states
01 Pubblicazione su rivista::01a Articolo in rivista
Particle traps and stationary currents captured by an active 1D model / Cirillo, E. N. M.; Colangeli, M.; Di Francesco, A.; Kroger, M.; Rondoni, L.. - In: PHYSICA. A. - ISSN 0378-4371. - 642:(2024), pp. 1-20. [10.1016/j.physa.2024.129763]
File allegati a questo prodotto
File Dimensione Formato  
Cirillo_Particle_2024 .pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1710571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact