Dimensionality reduction algorithms are essential in the study of multivariate datasets. Many variables make it difficult to visualize data. In Archaeology, this problem often concerns the study of some variables, which can be quantitative or qualitative. In this article, several methods for dimension reduction are applied to a pottery dataset from the protohistoric necropolis Osteria dell’Osa, located 20 km East of Rome. These methods offer the possibility of visualising and analysing large amount of data in a very short time. Our results show that non-linear and non-parametric algorithms such as t-SNE and UMAP are the best choice for visualising and exploring this type of data.

Dimensionality reduction for data visualization and exploratory analysis of ceramic assemblages / Cardarelli, Lorenzo; Lapadula, Annalisa. - In: ARCHEOLOGIA E CALCOLATORI. - ISSN 2385-1953. - (2022). [10.19282/ac.33.2.2022.03]

Dimensionality reduction for data visualization and exploratory analysis of ceramic assemblages

Lorenzo Cardarelli
Primo
;
2022

Abstract

Dimensionality reduction algorithms are essential in the study of multivariate datasets. Many variables make it difficult to visualize data. In Archaeology, this problem often concerns the study of some variables, which can be quantitative or qualitative. In this article, several methods for dimension reduction are applied to a pottery dataset from the protohistoric necropolis Osteria dell’Osa, located 20 km East of Rome. These methods offer the possibility of visualising and analysing large amount of data in a very short time. Our results show that non-linear and non-parametric algorithms such as t-SNE and UMAP are the best choice for visualising and exploring this type of data.
2022
Quantitative archaeology; Pottery; Statistics
01 Pubblicazione su rivista::01a Articolo in rivista
Dimensionality reduction for data visualization and exploratory analysis of ceramic assemblages / Cardarelli, Lorenzo; Lapadula, Annalisa. - In: ARCHEOLOGIA E CALCOLATORI. - ISSN 2385-1953. - (2022). [10.19282/ac.33.2.2022.03]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1710511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact