We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of under- water neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Varia- tional Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Fur- thermore, we find that the spatial resolution of the localization of light sources highly depends on the configu- ration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.
Studying bioluminescence flashes with the ANTARES deep‐sea neutrino telescope / Reeb, Nico; Hutschenreuter, Sebastian; Zehetner, Philipp; Ensslin, Torsten; Albert, A.; Alves, S.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J. ‐J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; Bendahman, M.; Bertin, V.; Biagi, S.; Bissinger, M.; Boumaaza, J.; Bouta, M.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Caiffi, B.; Capone, A.; Caramete, L.; Carr, J.; Carretero, V.; Celli, S.; Chabab, M.; Chau, T. N.; El Moursli, R. Cherkaoui; Chiarusi, T.; Circella, M.; Coleiro, A.; Colomer‐molla, M.; Coniglione, R.; Coyle, P.; Creusot, A.; Díaz, A. F.; de Wasseige, G.; Deschamps, A.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; van Eeden, T.; El Khayati, N.; Enzenhöfer, A.; Fermani, P.; Ferrara, G.; Filippini, F.; Fusco, L.; Gatelet, Y.; Gay, P.; Glotin, H.; Gozzini, R.; Gracia Ruiz, R.; Graf, K.; Guidi, C.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández‐rey, J. J.; Hößl, J.; Hofestädt, J.; Huang, F.; Illuminati, G.; James, C. W.; Jisse‐jung, B.; de Jong, M.; de Jong, P.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Khan‐chowdhury, N. R.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Le Breton, R.; Lefèvre, D.; Leonora, E.; Levi, G.; Lincetto, M.; Lopez‐coto, D.; Loucatos, S.; Maderer, L.; Manczak, J.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez‐mora, J. A.; Melis, K.; Migliozzi, P.; Moussa, A.; Muller, R.; Nauta, L.; Navas, S.; Nezri, E.; Fearraigh, B. Ó; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrin‐terrin, M.; Piattelli, P.; Pieterse, C.; Poirè, C.; Popa, V.; Pradier, T.; Randazzo, N.; Reck, S.; Riccobene, G.; Romanov, A.; Sánchez‐losa, A.; Salesa Greus, F.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schumann, J.; Schüssler, F.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Tingay, S. J.; Vallage, B.; Van Elewyck, V.; Versari, F.; Viola, S.; Vivolo, D.; Wilms, J.; Zavatarelli, S.; Zegarelli, A.; Zornoza, J. D.; Zúñiga, J.; Null, Null. - In: LIMNOLOGY AND OCEANOGRAPHY: METHODS. - ISSN 1541-5856. - 21:11(2023), pp. 734-760. [10.1002/lom3.10578]
Studying bioluminescence flashes with the ANTARES deep‐sea neutrino telescope
Biagi, S.;Capone, A.;Celli, S.;Chiarusi, T.;Di Palma, I.;Fermani, P.;Gozzini, R.;Illuminati, G.;Zegarelli, A.;
2023
Abstract
We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of under- water neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Varia- tional Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Fur- thermore, we find that the spatial resolution of the localization of light sources highly depends on the configu- ration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.File | Dimensione | Formato | |
---|---|---|---|
Reeb_Studying-bioluminescence-flashes_2023.pdf
accesso aperto
Note: Articolo su rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.