As shown in the literature, the dependence structure in mortality data cannot be ignored in projecting future trends, in particular for a group of similar populations characterized bycommon long-run relationships. We propose a new multifactor model for capturing common and specific features of the trend over time. We implement the model and investigate its impact on actuarial valuations,through the introduction of the concept of the dependency premium.

The dependency premium based on a Multifactor Model for dependent mortality data / D'Amato, Valeria; Haberman, Steven; Piscopo, Gabriella. - In: COMMUNICATIONS IN STATISTICS. THEORY AND METHODS. - ISSN 0361-0926. - (2019), pp. 50-61. [10.1080/03610926.2017.1366523]

The dependency premium based on a Multifactor Model for dependent mortality data

D'Amato, Valeria;
2019

Abstract

As shown in the literature, the dependence structure in mortality data cannot be ignored in projecting future trends, in particular for a group of similar populations characterized bycommon long-run relationships. We propose a new multifactor model for capturing common and specific features of the trend over time. We implement the model and investigate its impact on actuarial valuations,through the introduction of the concept of the dependency premium.
2019
longevity risk; coherent mortality forecasts; dependence
01 Pubblicazione su rivista::01a Articolo in rivista
The dependency premium based on a Multifactor Model for dependent mortality data / D'Amato, Valeria; Haberman, Steven; Piscopo, Gabriella. - In: COMMUNICATIONS IN STATISTICS. THEORY AND METHODS. - ISSN 0361-0926. - (2019), pp. 50-61. [10.1080/03610926.2017.1366523]
File allegati a questo prodotto
File Dimensione Formato  
D'amato_dependency-premium_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 956.85 kB
Formato Adobe PDF
956.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1710099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact