We propose novel quantile regression methods when the response is discrete and the data come from a longitudinal design. The approach is based on conditional mid-quantiles, which have good theoretical properties even in the presence of ties. Optimization of a ridge-type penalized objective function accommodates for the data dependence. We investigate the performance and pertinence of our methods in a simulation study and an original application to macroprudential policies use in more than one hundred countries over a period of seventeen years.

Mid-quantile regression for discrete panel data / Russo, Alfonso; Farcomeni, Alessio; Geraci, Marco. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - (2024), pp. 1-18. [10.1080/00949655.2024.2352527]

Mid-quantile regression for discrete panel data

Farcomeni, Alessio;Geraci, Marco
2024

Abstract

We propose novel quantile regression methods when the response is discrete and the data come from a longitudinal design. The approach is based on conditional mid-quantiles, which have good theoretical properties even in the presence of ties. Optimization of a ridge-type penalized objective function accommodates for the data dependence. We investigate the performance and pertinence of our methods in a simulation study and an original application to macroprudential policies use in more than one hundred countries over a period of seventeen years.
2024
Cluster design; fixed effects; mid-quantile regression; panel data; random effects
01 Pubblicazione su rivista::01a Articolo in rivista
Mid-quantile regression for discrete panel data / Russo, Alfonso; Farcomeni, Alessio; Geraci, Marco. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - (2024), pp. 1-18. [10.1080/00949655.2024.2352527]
File allegati a questo prodotto
File Dimensione Formato  
Russo_Mid-quantile-regression_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact