Cystinosis is a rare, autosomal recessive, lysosomal storage disease caused by mutations in the gene CTNS, leading to cystine accumulation in the lysosomes. While cysteamine lowers the cystine levels, it does not cure the disease, suggesting that CTNS exerts additional functions besides cystine transport. This study investigated the impact of infantile and juvenile CTNS mutations with discrepant genotype/phenotype correlations on CTNS expression, and subcellular localisation and function in clinically relevant cystinosis cell models to better understand the link between genotype and CTNS function. Using CTNS-depleted proximal tubule epithelial cells and patient-derived fibroblasts, we expressed a selection of CTNSmutants under various promoters. EF1a-driven expression led to substantial overexpression, resulting in CTNS protein levels that localised to the lysosomal compartment. All CTNSmutants tested also reversed cystine accumulation, indicating that CTNSmutants still exert transport activity, possibly due to the overexpression conditions. Surprisingly, even CTNSmutants expression driven by the less potent CTNS and EFS promoters reversed the cystine accumulation, contrary to the CTNSG339R missense mutant. Taken together, our findings shed new light on CTNS mutations, highlighting the need for robust assessment methodologies in clinically relevant cellular models and thus paving the way for better stratification of cystinosis patients, and advocating for the development of more personalized therapy.
Residual cystine transport activity for specific infantile and juvenile CTNS mutations in a PTEC-based addback model / Medaer, Louise; David, Dries; Smits, Maxime; Levtchenko, Elena; Sampaolesi, Maurilio; Gijsbers, Rik. - In: CELLS. - ISSN 2073-4409. - 13:7(2024), pp. 1-20. [10.3390/cells13070646]
Residual cystine transport activity for specific infantile and juvenile CTNS mutations in a PTEC-based addback model
Sampaolesi, MaurilioPenultimo
Writing – Review & Editing
;
2024
Abstract
Cystinosis is a rare, autosomal recessive, lysosomal storage disease caused by mutations in the gene CTNS, leading to cystine accumulation in the lysosomes. While cysteamine lowers the cystine levels, it does not cure the disease, suggesting that CTNS exerts additional functions besides cystine transport. This study investigated the impact of infantile and juvenile CTNS mutations with discrepant genotype/phenotype correlations on CTNS expression, and subcellular localisation and function in clinically relevant cystinosis cell models to better understand the link between genotype and CTNS function. Using CTNS-depleted proximal tubule epithelial cells and patient-derived fibroblasts, we expressed a selection of CTNSmutants under various promoters. EF1a-driven expression led to substantial overexpression, resulting in CTNS protein levels that localised to the lysosomal compartment. All CTNSmutants tested also reversed cystine accumulation, indicating that CTNSmutants still exert transport activity, possibly due to the overexpression conditions. Surprisingly, even CTNSmutants expression driven by the less potent CTNS and EFS promoters reversed the cystine accumulation, contrary to the CTNSG339R missense mutant. Taken together, our findings shed new light on CTNS mutations, highlighting the need for robust assessment methodologies in clinically relevant cellular models and thus paving the way for better stratification of cystinosis patients, and advocating for the development of more personalized therapy.File | Dimensione | Formato | |
---|---|---|---|
Medaer_Residual_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
6.13 MB
Formato
Adobe PDF
|
6.13 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.