In this work, we present a method to characterize the transmission matrices of complex scattering media using a physics-informed, multi-plane neural network (MPNN) without the requirement of a known optical reference field. We use this method to accurately measure the transmission matrix of a commercial multi-mode fiber without the problems of output-phase ambiguity and dark spots, leading to up to 58% improvement in focusing efficiency compared with phase-stepping holography. We demonstrate how our method is significantly more noise-robust than phase-stepping holography and show how it can be generalized to characterize a cascade of transmission matrices, allowing one to control the propagation of light between independent scattering media. This work presents an essential tool for accurate light control through complex media, with applications ranging from classical optical networks, biomedical imaging, to quantum information processing.Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Referenceless characterization of complex media using physics-informed neural networks / Goel, Suraj; Conti, Claudio; Leedumrongwatthanakun, Saroch; Malik, Mehul. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 31:20(2023). [10.1364/oe.500529]

Referenceless characterization of complex media using physics-informed neural networks

Conti, Claudio
Writing – Review & Editing
;
2023

Abstract

In this work, we present a method to characterize the transmission matrices of complex scattering media using a physics-informed, multi-plane neural network (MPNN) without the requirement of a known optical reference field. We use this method to accurately measure the transmission matrix of a commercial multi-mode fiber without the problems of output-phase ambiguity and dark spots, leading to up to 58% improvement in focusing efficiency compared with phase-stepping holography. We demonstrate how our method is significantly more noise-robust than phase-stepping holography and show how it can be generalized to characterize a cascade of transmission matrices, allowing one to control the propagation of light between independent scattering media. This work presents an essential tool for accurate light control through complex media, with applications ranging from classical optical networks, biomedical imaging, to quantum information processing.Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
2023
machine learning; quantum ; quantum optics
01 Pubblicazione su rivista::01a Articolo in rivista
Referenceless characterization of complex media using physics-informed neural networks / Goel, Suraj; Conti, Claudio; Leedumrongwatthanakun, Saroch; Malik, Mehul. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 31:20(2023). [10.1364/oe.500529]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact