As climate change accelerates and operational energy burdens strain resources, protecting irreplaceable cultural heritage assets requires urgent prioritization to align preservation with principles of environmental and economic sustainability. Global building energy associated carbon dioxide emissions are projected to escalate over 50% by 2060 in a business as usual scenario, necessitating extensive retrofitting interventions. This research pioneer's solar technology integration methodologies for heritage sites by developing an original framework evaluating renewable addition feasibility based on comprehensive multi-criteria assessments integrating architectural, cultural, climatic and energy data analytic techniques with participatory planning essential for meaningful adoption. Outcomes aim conveying solar solutions as contemporary manifestations of custodial stewardship honoring artifacts from prior generations by sustaining their continuation using state-of-the-art environmental control modernizations. Demonstration case studies confirm site net-zero energy balances attainable today through 50% consumption reductions from envelope and lighting upgrades supplemented by distributed 20% efficiency building-integrated photovoltaic arrays sized under 50 W/m2 for negligible visibility or structural impacts. Controlled demonstration installations enable incremental capacity expansion validating projections to overcome reservations around inadequately modeled material impacts over full weathering exposure cycles. Participatory monitoring and contextual priority balancing thereby foster smooth logistical coordination and optimized generative restoration.
Solar energy integration in heritage buildings. A case study of St. Nicholas Church / Karimi, H.; Adibhesami, M. A.; Hoseinzadeh, S.; Movafagh, S.; Estalkhsari, B. M.; Astiaso Garcia, D.. - In: ENERGY REPORTS. - ISSN 2352-4847. - 11:(2024), pp. 4177-4191. [10.1016/j.egyr.2024.03.043]
Solar energy integration in heritage buildings. A case study of St. Nicholas Church
Hoseinzadeh S.;Astiaso Garcia D.
2024
Abstract
As climate change accelerates and operational energy burdens strain resources, protecting irreplaceable cultural heritage assets requires urgent prioritization to align preservation with principles of environmental and economic sustainability. Global building energy associated carbon dioxide emissions are projected to escalate over 50% by 2060 in a business as usual scenario, necessitating extensive retrofitting interventions. This research pioneer's solar technology integration methodologies for heritage sites by developing an original framework evaluating renewable addition feasibility based on comprehensive multi-criteria assessments integrating architectural, cultural, climatic and energy data analytic techniques with participatory planning essential for meaningful adoption. Outcomes aim conveying solar solutions as contemporary manifestations of custodial stewardship honoring artifacts from prior generations by sustaining their continuation using state-of-the-art environmental control modernizations. Demonstration case studies confirm site net-zero energy balances attainable today through 50% consumption reductions from envelope and lighting upgrades supplemented by distributed 20% efficiency building-integrated photovoltaic arrays sized under 50 W/m2 for negligible visibility or structural impacts. Controlled demonstration installations enable incremental capacity expansion validating projections to overcome reservations around inadequately modeled material impacts over full weathering exposure cycles. Participatory monitoring and contextual priority balancing thereby foster smooth logistical coordination and optimized generative restoration.File | Dimensione | Formato | |
---|---|---|---|
Karimi_Solar energy_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
7.3 MB
Formato
Adobe PDF
|
7.3 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.