To the best of our knowledge, the impacts of crop residue cover (CRC) on agricultural productivity and soil fertility have not been studied by previous researchers. In this regard, this study aims to apply an integrated approach of remote sensing and geospatial analysis to detect CRC and monitor the effects of CRC on agricultural productivity, as well as soil chemical and physical characteristics. To achieve this, a series of Landsat images and 275 ground control points (GCPs) collected from the study areas for the years 2013, 2015, and 2021 were used. A convolutional neural network (CNN), a class of artificial neural network has commonly applied to analyze visual imagery, was employed in this study for CRC detection in two classes (Not-CRC and CRC) for the years 2013, 2015, and 2021. To assess the effects of CRC, the Normalized Difference Vegetation Index (NDVI) was applied to Landsat image series for the years 2015 (22 images), 2019 (20 images), and 2022 (23 images). Furthermore, this study evaluates the impacts of CRC on soil fertility based on collected field observation data. The results show a high performance (Accuracy of > 0.95) of the CNN for CRC detection and mapping. The findings also reveal positive effects of CRC on agricultural productivity, indicating an increase in vegetation density by about 0.1909 and 0.1377 for study areas 1 and 2, respectively, from 2015 to 2022. The results also indicate an increase in soil chemical and physical characteristics, including EC, PH, Na, Mg, HCO3, K, silt, sand, and clay from 2015 to 2022, based on physical examination. In general, the findings underscore that the value of an integrated approach of remote sensing and geospatial analysis for detecting CRC and monitoring its impacts on agricultural productivity and soil fertility. This research can offer valuable insight to researchers and decision-makers in the field of soil science, land management and agriculture.

Monitoring the impacts of crop residue cover on agricultural productivity and soil chemical and physical characteristics / Kazemi Garajeh, Mohammad; Hassangholizadeh, Keyvan; Bakhshi Lomer, Amir Reza; Ranjbari, Amin; Ebadi, Ladan; Sadeghnejad, Mostafa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023). [10.1038/s41598-023-42367-9]

Monitoring the impacts of crop residue cover on agricultural productivity and soil chemical and physical characteristics

Kazemi Garajeh, Mohammad
Primo
;
2023

Abstract

To the best of our knowledge, the impacts of crop residue cover (CRC) on agricultural productivity and soil fertility have not been studied by previous researchers. In this regard, this study aims to apply an integrated approach of remote sensing and geospatial analysis to detect CRC and monitor the effects of CRC on agricultural productivity, as well as soil chemical and physical characteristics. To achieve this, a series of Landsat images and 275 ground control points (GCPs) collected from the study areas for the years 2013, 2015, and 2021 were used. A convolutional neural network (CNN), a class of artificial neural network has commonly applied to analyze visual imagery, was employed in this study for CRC detection in two classes (Not-CRC and CRC) for the years 2013, 2015, and 2021. To assess the effects of CRC, the Normalized Difference Vegetation Index (NDVI) was applied to Landsat image series for the years 2015 (22 images), 2019 (20 images), and 2022 (23 images). Furthermore, this study evaluates the impacts of CRC on soil fertility based on collected field observation data. The results show a high performance (Accuracy of > 0.95) of the CNN for CRC detection and mapping. The findings also reveal positive effects of CRC on agricultural productivity, indicating an increase in vegetation density by about 0.1909 and 0.1377 for study areas 1 and 2, respectively, from 2015 to 2022. The results also indicate an increase in soil chemical and physical characteristics, including EC, PH, Na, Mg, HCO3, K, silt, sand, and clay from 2015 to 2022, based on physical examination. In general, the findings underscore that the value of an integrated approach of remote sensing and geospatial analysis for detecting CRC and monitoring its impacts on agricultural productivity and soil fertility. This research can offer valuable insight to researchers and decision-makers in the field of soil science, land management and agriculture.
2023
crop residue cover; deep learning; photosynthetic vegetetion
01 Pubblicazione su rivista::01a Articolo in rivista
Monitoring the impacts of crop residue cover on agricultural productivity and soil chemical and physical characteristics / Kazemi Garajeh, Mohammad; Hassangholizadeh, Keyvan; Bakhshi Lomer, Amir Reza; Ranjbari, Amin; Ebadi, Ladan; Sadeghnejad, Mostafa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 13:1(2023). [10.1038/s41598-023-42367-9]
File allegati a questo prodotto
File Dimensione Formato  
Garajeh_Monitoring-the-impacts-of-crop_2023.pdf

accesso aperto

Note: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709004
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact