Rapid detection and mapping of landforms are crucially important to improve our understanding of past and presently active processes across the earth, especially, in complex and dynamic volcanoes. Traditional landform modeling approaches are labor-intensive and time-consuming. In recent years, landform mapping has increasingly been digitized. This study conducted an in-depth analysis of convolutional neural networks (CNN) in combination with geographic object-based image analysis (GEOBIA), for mapping volcanic and glacial landforms. Sentinel-2 image, as well as predisposing variables (DEM and its derivatives, e.g., slope, aspect, curvature and flow accumulation), were segmented using a multi-resolution segmentation algorithm, and relevant features were selected to define segmentation scales for each landform category. A set of object-based features was developed based on spectral (e.g., brightness), geometrical (e.g., shape index), and textural (grey level co-occurrence matrix) information. The landform modelling networks were then trained and tested based on labelled objects generated using GEOBIA and ground control points. Our results show that an integrated approach of GEOBIA and CNN achieved an ACC of 0.9685, 0.9780, 0.9614, 0.9767, 0.9675, 0.9718, 0.9600, and 0.9778 for dacite lava, caldera, andesite lava, volcanic cone, volcanic tuff, glacial circus, glacial valley, and suspended valley, respectively. The quantitative evaluation shows the highest performance (Accuracy > 0.9600 and cross-validation accuracy > 0.9400) for volcanic and glacial landforms and; therefore, is recommended for regional and large-scale landform mapping. Our results and the provided automatic workflow emphasize the potential of integrated GEOBIA and CNN for fast and efficient landform mapping as a first step in the earth's surface management.

Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping / Kazemi Garajeh, Mohammad; Li, Zhenlong; Hasanlu, Saber; Zare Naghadehi, Saeid; Hossein Haghi, Vahid. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 12:1(2022). [10.1038/s41598-022-26026-z]

Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping

Kazemi Garajeh, Mohammad
Primo
;
2022

Abstract

Rapid detection and mapping of landforms are crucially important to improve our understanding of past and presently active processes across the earth, especially, in complex and dynamic volcanoes. Traditional landform modeling approaches are labor-intensive and time-consuming. In recent years, landform mapping has increasingly been digitized. This study conducted an in-depth analysis of convolutional neural networks (CNN) in combination with geographic object-based image analysis (GEOBIA), for mapping volcanic and glacial landforms. Sentinel-2 image, as well as predisposing variables (DEM and its derivatives, e.g., slope, aspect, curvature and flow accumulation), were segmented using a multi-resolution segmentation algorithm, and relevant features were selected to define segmentation scales for each landform category. A set of object-based features was developed based on spectral (e.g., brightness), geometrical (e.g., shape index), and textural (grey level co-occurrence matrix) information. The landform modelling networks were then trained and tested based on labelled objects generated using GEOBIA and ground control points. Our results show that an integrated approach of GEOBIA and CNN achieved an ACC of 0.9685, 0.9780, 0.9614, 0.9767, 0.9675, 0.9718, 0.9600, and 0.9778 for dacite lava, caldera, andesite lava, volcanic cone, volcanic tuff, glacial circus, glacial valley, and suspended valley, respectively. The quantitative evaluation shows the highest performance (Accuracy > 0.9600 and cross-validation accuracy > 0.9400) for volcanic and glacial landforms and; therefore, is recommended for regional and large-scale landform mapping. Our results and the provided automatic workflow emphasize the potential of integrated GEOBIA and CNN for fast and efficient landform mapping as a first step in the earth's surface management.
2022
volcanic landforms; deep learning; rock glaciers
01 Pubblicazione su rivista::01a Articolo in rivista
Developing an integrated approach based on geographic object-based image analysis and convolutional neural network for volcanic and glacial landforms mapping / Kazemi Garajeh, Mohammad; Li, Zhenlong; Hasanlu, Saber; Zare Naghadehi, Saeid; Hossein Haghi, Vahid. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 12:1(2022). [10.1038/s41598-022-26026-z]
File allegati a questo prodotto
File Dimensione Formato  
Garajeh_Developing-an-integrated-approach_2022.pdf

accesso aperto

Note: articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 5.66 MB
Formato Adobe PDF
5.66 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709000
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact