The goal of the MICS (Made in Italy, Circular and Sustainable) project is to develop new models and techniques to support the entire pipeline for applying Data Science algorithms to data from industrial processes. Although many libraries and tools are already available to aid the analysis of data, we believe that each different application domain requires individual study to propose appropriate methods and tools that accommodate the specific peculiarities of its data. In this position paper, we discuss the following points by also outlining our case studies.

The MICS Project: A Data Science Pipeline for Industry 4.0 Applications / Cristaldi, L.; Esmaili, P.; Gruosso, G.; Bella, A. L.; Mecella, M.; Scattolini, R.; Arman, A.; Susto, G. A.; Tanca, L.. - (2023), pp. 427-431. (Intervento presentato al convegno 2nd Edition IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2023 tenutosi a ita) [10.1109/MetroXRAINE58569.2023.10405727].

The MICS Project: A Data Science Pipeline for Industry 4.0 Applications

Mecella M.
;
Arman A.
;
2023

Abstract

The goal of the MICS (Made in Italy, Circular and Sustainable) project is to develop new models and techniques to support the entire pipeline for applying Data Science algorithms to data from industrial processes. Although many libraries and tools are already available to aid the analysis of data, we believe that each different application domain requires individual study to propose appropriate methods and tools that accommodate the specific peculiarities of its data. In this position paper, we discuss the following points by also outlining our case studies.
2023
2nd Edition IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2023
case study; data management; digital factories; machine learning pipeline
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
The MICS Project: A Data Science Pipeline for Industry 4.0 Applications / Cristaldi, L.; Esmaili, P.; Gruosso, G.; Bella, A. L.; Mecella, M.; Scattolini, R.; Arman, A.; Susto, G. A.; Tanca, L.. - (2023), pp. 427-431. (Intervento presentato al convegno 2nd Edition IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2023 tenutosi a ita) [10.1109/MetroXRAINE58569.2023.10405727].
File allegati a questo prodotto
File Dimensione Formato  
Cristaldi_TheMICS_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 840.28 kB
Formato Adobe PDF
840.28 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1708716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact