A low-cost on-paper sensor based on 5,10,15-tritolylcorrolatocobalt(III) triphenylphosphine, CoTTCorr(PPh3), was developed for cyanide detection in aqueous solutions. The sensor was coupled to a smartphone and used a home-written color intensity analysis software in order to record and interpret the colorimetric response. The detection of cyanide was possible down to 0.053 mg/L, an order of magnitude lower than the value of 0.5 mg/L set by the World Health Organization (WHO) for safe short-term exposure of cyanide in potable water. The colorimetric sensor had selectivity toward cyanide ions over the anions Cl-, Br, F-, NO2, SCN-, OAc-, ClO4-, H2PO4- and HCO3- while the influence of NO3- ions on the sensor optical response towards cyanide was overcome by optimization of the ionophore/anion-exchanger ratio inside the sensing material. The best performance was obtained for the optode with an ionophore to exchanger ratio of 1:3. The optimized optodes were employed for quantification of cyanide content added to potable water and saliva.
Smartphone coupled with a paper-based optode: Towards a selective cyanide detection / Lvova, Larisa; Pomarico, Giuseppe; Mandoj, Federica; Caroleo, Fabrizio; Di Natale, Corrado; Kadish, Karl M.; Nardis, Sara. - In: JOURNAL OF PORPHYRINS AND PHTHALOCYANINES. - ISSN 1088-4246. - 24:(2020), pp. 964-972. [10.1142/S1088424620500091]
Smartphone coupled with a paper-based optode: Towards a selective cyanide detection
Pomarico, Giuseppe;
2020
Abstract
A low-cost on-paper sensor based on 5,10,15-tritolylcorrolatocobalt(III) triphenylphosphine, CoTTCorr(PPh3), was developed for cyanide detection in aqueous solutions. The sensor was coupled to a smartphone and used a home-written color intensity analysis software in order to record and interpret the colorimetric response. The detection of cyanide was possible down to 0.053 mg/L, an order of magnitude lower than the value of 0.5 mg/L set by the World Health Organization (WHO) for safe short-term exposure of cyanide in potable water. The colorimetric sensor had selectivity toward cyanide ions over the anions Cl-, Br, F-, NO2, SCN-, OAc-, ClO4-, H2PO4- and HCO3- while the influence of NO3- ions on the sensor optical response towards cyanide was overcome by optimization of the ionophore/anion-exchanger ratio inside the sensing material. The best performance was obtained for the optode with an ionophore to exchanger ratio of 1:3. The optimized optodes were employed for quantification of cyanide content added to potable water and saliva.File | Dimensione | Formato | |
---|---|---|---|
Lvova_Smartphone_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
996.22 kB
Formato
Adobe PDF
|
996.22 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.