Chiral properties of plasmonic metasurfaces, especially related to different absorption of left and right circularly polarized light leading to circular dichroism (CD), are a research hot topic in nanophotonics. There is often a need to understand the physical origin of CD for different chiral metasurfaces, and to get guidelines for the design of structures with optimized and robust CD. In this work, we numerically study CD at normal incidence in square arrays of elliptic nanoholes etched in thin metallic layers (Ag, Au, Al) on a glass substrate and tilted with respect to the symmetry axes. Strong CD arises in absorption spectra at the same wavelength region of extraordinary optical transmission, indicating highly resonant coupling between light and surface plasmon polaritons at the metal/glass and metal/air interfaces. We elucidate the physical origin of absorption CD by a careful comparison of optical spectra for different polarizations (linear and circular), with the aid of static and dynamic simulations of local enhancement of the electric field. Furthermore, we optimize the CD as a function of the ellipse parameters (diameters and tilt), the thickness of the metallic layer, and the lattice constant. We find that silver and gold metasurfaces are most useful for CD resonances above 600 nm, while aluminum metasurfaces are convenient for achieving strong CD resonances in the short-wavelength range of the visible regime and in the near UV. The results give a full picture of chiral optical effects at normal incidence in this simple nanohole array, and suggest interesting applications for chiral biomolecules sensing in such plasmonic geometries.

Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice / Ali, H.; Petronijevic, E.; Pellegrini, G.; Sibilia, C.; Andreani, L. C.. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 31:9(2023), pp. 14196-14211. [10.1364/OE.485324]

Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice

Petronijevic E.;Sibilia C.;
2023

Abstract

Chiral properties of plasmonic metasurfaces, especially related to different absorption of left and right circularly polarized light leading to circular dichroism (CD), are a research hot topic in nanophotonics. There is often a need to understand the physical origin of CD for different chiral metasurfaces, and to get guidelines for the design of structures with optimized and robust CD. In this work, we numerically study CD at normal incidence in square arrays of elliptic nanoholes etched in thin metallic layers (Ag, Au, Al) on a glass substrate and tilted with respect to the symmetry axes. Strong CD arises in absorption spectra at the same wavelength region of extraordinary optical transmission, indicating highly resonant coupling between light and surface plasmon polaritons at the metal/glass and metal/air interfaces. We elucidate the physical origin of absorption CD by a careful comparison of optical spectra for different polarizations (linear and circular), with the aid of static and dynamic simulations of local enhancement of the electric field. Furthermore, we optimize the CD as a function of the ellipse parameters (diameters and tilt), the thickness of the metallic layer, and the lattice constant. We find that silver and gold metasurfaces are most useful for CD resonances above 600 nm, while aluminum metasurfaces are convenient for achieving strong CD resonances in the short-wavelength range of the visible regime and in the near UV. The results give a full picture of chiral optical effects at normal incidence in this simple nanohole array, and suggest interesting applications for chiral biomolecules sensing in such plasmonic geometries.
2023
plasmonics; chirality; nanostructures; nanoholes; nano-optics
01 Pubblicazione su rivista::01a Articolo in rivista
Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice / Ali, H.; Petronijevic, E.; Pellegrini, G.; Sibilia, C.; Andreani, L. C.. - In: OPTICS EXPRESS. - ISSN 1094-4087. - 31:9(2023), pp. 14196-14211. [10.1364/OE.485324]
File allegati a questo prodotto
File Dimensione Formato  
Ali_Circular_2023.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.38 MB
Formato Adobe PDF
5.38 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1707654
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact